

Benutzerhandbuch

DIS-2 48/10 DIS-2 48/10 IC DIS-2 48/10 FB

Metronix Meßgeräte und Elektronik GmbH Kocherstraße 3 D-38120 Braunschweig Germany
 Telefon:
 +49-(0)531-8668-0

 Telefax:
 +49-(0)531-8668-555

 E-mail:
 vertrieb@metronix.de

 http://www.metronix.de

Urheberrechte

© 2011 Alle Rechte vorbehalten.

Die Informationen und Angaben in diesem Dokument sind nach bestem Wissen zusammengestellt worden. Trotzdem können abweichende Angaben zwischen dem Dokument und dem Produkt nicht mit letzter Sicherheit ausgeschlossen werden. Für die Geräte und zugehörige Programme in der dem Kunden überlassenen Fassung gewährleistet Metronix den vertragsgemäßen Gebrauch in Übereinstimmung mit der Nutzerdokumentation. Im Falle erheblicher Abweichungen von der Nutzerdokumentation ist Metronix zur Nachbesserung berechtigt und, soweit diese nicht mit unangemessenem Aufwand verbunden ist, auch verpflichtet. Eine eventuelle Gewährleistung erstreckt sich nicht auf Mängel, die durch Abweichen von den für das Gerät vorgesehenen und in der Nutzerdokumentation angegebenen Einsatzbedingungen verursacht werden.

Metronix übernimmt keine Gewähr dafür, dass die Produkte den Anforderungen und Zwecken des Erwerbers genügen oder mit anderen von ihm ausgewählten Produkten zusammenarbeiten. Metronix übernimmt keine Haftung für Folgeschäden, die im Zusammenwirken der Produkte mit anderen Produkten oder aufgrund unsachgemäßer Handhabung an Maschinen oder Anlagen entstehen.

Metronix behält sich das Recht vor, das Dokument oder das Produkt ohne vorherige Ankündigung zu ändern, zu ergänzen oder zu verbessern.

Dieses Dokument darf weder ganz noch teilweise ohne ausdrückliche Genehmigung des Urhebers in irgendeiner Form reproduziert oder in eine andere natürliche oder maschinenlesbare Sprache oder auf Datenträger übertragen werden, sei es elektronisch, mechanisch, optisch oder auf andere Weise.

Warenzeichen

Alle Produktnamen in diesem Dokument können eingetragene Warenzeichen sein. Alle Warenzeichen in diesem Dokument werden nur zur Identifikation des jeweiligen Produkts verwendet.

ServoCommander[™] ist ein eingetragenes Warenzeichen der Metronix Meßgeräte und Elektronik GmbH.

Verzeichn	is der Revisionen				
Ersteller:		Metronix Meßgeräte und Elektronik GmbH			
Handbuch	iname:	Benutzerhandbuch "[DIS-2 48/10"		
Dateinam	e:	P-HB_DIS-2_2p0_DE	 _		
Speicherc	ort der Datei:				
Lfd. Nr.	Beschreibung		Revisions-Index	Datum der Änderung	
001	Erste Freigegebene V	ersion	1.0	20.04.2005	
002	Erweiterung auf DIS-2 Erweiterungen der FW	: 48/10-FB / 3.0	1.1	12.10.2005 JRE/PME/AHA	
003	Erweiterung um "Exter	nded Positioning"	1.11	20.01.2011	
004	Corporate Identity aktu nischen Änderungen	ualisiert – Keine tech-	2.0	18.04.2011	

INHALTSVERZEICHNIS:

1	Allge	meines	13
	1.1	In diesem Handbuch verwendete Symbole	13
	1.2	Leistungsmerkmale und Anwendungsbereich des DIS-2	13
		1.2.1 Grundlegende Informationen	13
		1.2.2 Anwendungsbereich und bestimmungsgemaße Verwendung	14
	13	Leistungsmerkmale des DIS-2 ServoCommander TM	16
	1.0	1.3.1 Grundlegende Informationen	16
		1.3.2 Leistungsmerkmale des DIS-2 ServoCommander [™]	16
		1.3.3 Hard- und Software-Voraussetzungen	16
	1.4	Dokumentation	17
	1.5	Lieferzustand und Lieferumfang	17
2	Siche	rheitshinweise für elektrische Antriebe und Steuerungen	19
	2.1	Allgemeine Hinweise	19
	2.2	Gefahren durch falschen Gebrauch	20
	2.3	Sicherheitshinweise	21
		2.3.1 Allgemeine Sicherheitshinweise	21
		2.3.2 Sicherheitshinweise bei Montage und Wartung	22
		2.3.3 Schutz gegen Beruhren elektrischer Telle	23
		2.3.5 Schutz vor gefährlichen Bewegungen	24
		2.3.6 Schutz gegen Berühren heißer Teile	25
		2.3.7 Schutz bei Handhabung und Montage	25
3	Vorbe	ereitung der Inbetriebnahme	27
	3.1	Systemübersicht	27
	3.2	Anschluss des DIS-2 an die Steuerung	27
	3.3	Installation und Start des DIS-2 ServoCommander [™]	27
4	Erstp	arametrierung des Reglers	28
	4.1	Erstinbetriebnahme	28
		4.1.1 Parametersatz bei Auslieferung vom Hersteller4.1.2 Manuelle Erstinbetriebnahme	28 28
	4.2	Parametrierung über die Motordatenbank	29
	4.3	Grundparametrierung neuer Motoren	30
		4.3.1 Winkelgeber	30
		4.3.2 Motordaten	33
		4.3.3 Endstufe	35
		4.3.5 Zwischenkreisüberwachung	37
		4.3.6 Motortemperaturüberwachung	38
	4.4	Anwendungsparameter einstellen	39
		4.4.1 Einstellung der Grundkonfiguration4.4.2 Einstellung der Anzeigeeinheiten	39 39
	4.5	Eingabegrenzen festlegen	42
	4.6	Sicherheitsparameter wählen	42
	4.7	Einstellung der Reglerfreigabelogik	44
	4.8	Einstellung der Endschalter	45
	4.9	Einstellung der Drehrichtung	46
			40

5	Stron	n- und Drehzahlregelung	48
	5.1	Funktionsübersicht	48
	5.2	Drehzahlgeregelter Betrieb	50
		5.2.1 Optimierung des Drehzahlreglers	50
	5.2	5.2.2 Strategien zur Optimierung	51
	5.3	Orelinionentengeregener Betrieb	53
	5.4	Sollwertvorgabe uber Sollwertselektoren	53
		5.4.2 Drehmomentgeregelter Betrieb	54
		5.4.3 Sollwertvorgabe über RS232	55
		5.4.4 Sollwertrampe	55
6	Posit		50 57
U	6 1		J 7
	6.2	Patriahaart aktiviaraa	57
	0.2		50
	6.3	Lageregier einstellen und optimieren	59
	61	Clobala Positioniaroinstallungon	00 61
	0.4		01
	0.0	Positionssatze parametheren	62
	6.6		65
	6.7	Setzen von digitalen Ausgängen	66
	6.8	Referenzfahrt	66
		6.8.2 Parametrierung der Referenzfahrt	71
7	Wear	rogramm	73
•	7 1	Wegprogramm erstellen	75
		7.1.1 Optionen des Wegprogramms	76
		7.1.2 Programmende	77
		7.1.3 Positionsverzweigung 7.1.4 Sprupgverzweigung	/8 79
		7.1.5 Pegelabfrage	81
		7.1.6 Extended Positioning	82
	7.2	Wegprogramm debuggen	83
8	Funk	ion der Ein- und Ausgänge	84
	8.1	Digitale Eingänge DIN0 bis DIN9	84
		8.1.1 Einstellung der digitalen Eingänge	86
	8.2	Erweiterte Funktion der dig. Eingänge (Tipp & Teach) 8.2.1 Position Teachen	87 88
	8.3	Digitale Ausgänge DOUT0 bis DOUT3	90
		8.3.1 Einstellung der digitalen Ausgänge	90
		8.3.2 Einstellung der Meldungen für die digitalen Ausgänge	91
	8.4	Inkrementalgeberemulation uber DOUT1 und DOUT2	92
	8.5	Haltebremse DOUT3	94
	96	Applagoingänge AINO und AIN1	94
	0.0		30
F	0.7		97
9	Komr	nunikationsschnittstellen	98
	9.1	Steuerung über den CAN-Bus	98
		9.1.1 Funktionsubersicht	98

		9.1.2 9.1.3	Verarbeitung der CAN-Nachrichten Einstellung der CANopen Kommunikationsparameter	9 9)8)9
	9.2	Steueru	ng über die serielle Schnittstelle	10)()
		9.2.1	Funktionsübersicht	10)0
		9.2.2	Serielle Kommunikation über den DIS-2 ServoCommander [™]	10)0
		9.2.3	Einstellung der RS232 Kommunikationsparameter	10)1)1
		9.2.4	Kommunikationsfenster für RS232 Übertragung	10))
	03	Stouoru	ng über das Technologiainterface	10	12
	0.0	Oleacia		10	0
10	Fehle	rmeldur	ngen/Störungstabelle	10	4
	10.1	Fehlerül	berwachungen im DIS-2	10)4
		10.1.1	Überstrom- und Kurzschlussüberwachung	10)4
		10.1.2	Überwachung Zwischenkreisspannung	10)4
		10.1.3	Überwachung der Logikversorgung	10)5)5
		10.1.4	Überwachung des Motors	10)5)5
		10.1.6	Überwachung des Bewegungsablaufs	10)5
		10.1.7	Weitere interne Überwachungsfunktionen	10)6
		10.1.8	Betriebsstundenzähler	10)6
	10.2	Fehlerül	bersicht	10)6
	10.3	Fehlera	nzeige im DIS-2 ServoCommander [™]	11	2
	10.4	Fehlerm	anagement	11	3
11	Anhai	ng	Th 4	11	4
	11.1	Bedienu	ıngshinweise für den DIS-2 ServoCommander [™]	11	4
		11.1.1	Standard Schaltflächen	11	4
		11.1.2	Numerische Eingabefelder	11	4
		11.1.3	Darstellung von Finstellwerten und tatsächlichen Werten	11	5 5
		11.1.5	Standard-Fenster	11	16
		11.1.6	Verzeichnisse	11	7
		11.1.7	Kommunikation über Kommunikationsobjekte	11	7
		11.1.8	Beenden des Programms	11	7
	11.2	Herstell	en der seriellen Kommunikation	11	8
	11.3	Info-Fer	nster	12	20
	11.4	Schnellz	zugriff über Symbolleiste	12	21
	11.5	Verwen	dung der Oszilloskop Funktion	12	2
	1110	11.5.1	Oszilloskop Einstellungen	12	22
		11.5.2	Oszilloskopfenster	12	25
	11.6	Serielles	s Kommunikationsprotokoll	12	28
	11.7	Verzeich	nnis der Kommunikationsobiekte	13	30
		11.7.1	Basiseinheiten	13	37
		11.7.2	Bitbelegung Kommandowort / Statuswort / Fehlerwort	13	39
	11.8	Erweiter	rte Möglichkeiten im Menü Anzeigeinheiten	14	3
		11.8.1	Einstellungen der benutzerdefinierten Anzeigeeinheiten	14	13
		11.8.2	Nachkommastellen	14	14
		11.8.3	Direkteingabe der Weg-, Geschwindigkeits- und Beschleunigungseinheiten	14	4
	11.9	Wegpro	gramm: Beispiele	14	6
		11.9.1	Beispiel 1: Lineare Verkettung von Positionen	14	6
		11.9.2	Beispiel 2: Lineare Verkettung von Positionen mit Setzen eines digitalen	1.	17
		11.9.3	Beispiel 3: Setzen und Abfragen von digitalen Ein- und Ausgängen; Endlosschleife	14	-' 18
	11.10	Timingd	liagramme	14	8
			-		

	11.10.1 11.10.2 11.10.3 11.10.4 11.10.5	Einschaltsequenz Positionierung / Ziel erreicht Drehzahlmeldung Fehler quittieren Endschalter	1 1 1 1	49 50 50 51 51
11.11	Paramet 11.11.1 11.11.2 11.11.3	ersatzverwaltung Allgemeines Laden und Speichern von Parametersätzen Drucken von Parametersätzen	1 1 1 1	52 52 53 54
11.12	Offline-F	Parametrierung	1	56
11.13	Firmwar 11.13.1	e in den DIS-2 laden / Firmware-Update Firmware laden	1: 1	57 58
11 14	Technis	che Daten	1	60
	11.14.1	Umgebungsbedingungen und Qualifikation	1	60
	11.14.2	Abmessung und Gewicht	1	60
	11.14.3	Leistungsdaten	1	60
	11.14.4	Motortemperaturüberwachung	1	61
	11.14.5	Motoranschlussdaten [X301 – X303]	1	61
	11.14.6	Apaloge Hallgeberauswertung [X2]	1	67
	11 14 8	Hiperface Encoderauswertung [X2]	1	62
	11.14.9	Inkrementalgeberauswertung [X2] – nur DIS-2 48/10-FB	1	62
	11.14.10	Six Step Hallsensoren und Blockkommutierung [X2]	1	63
	11.14.11	RS232 [X1]	1	63
	11.14.12	CAN-Bus [X1]	1	63
	11.14.13	Analoge Ein- und Ausgange [X1]	1	63
	11 14 15	Inkrementalgeberausgang [X1]	1	64
11 15	Mechani	ische Installation	1/	65
11.15	11 15 1	Wichtige Hinweise	1	65
	11.15.2	Position und Anschluss der Steckverbinder	1	66
	11.15.3	Gehäuseabmessungen	1	67
	11.15.4	Montage	1	68
11.16	Steckve	rbinder am DIS-2 48/10	1	69
	11.16.1	Anschluss: Spannungsversorgung und I/O [X1]	1	69
	11.16.2	Anschluss: Winkelgeber [X2]	1	70
	11.16.3	Anschluss: Motor [X301 – X303]	1	71
	11.10.4	Anschluss: Frweiterungsstecknlatz [X8]	1	71
11 17	Stookyo	rhindor om DIS 2.49/10.1C	י זי	72
11.17	11 17 1	Apsobluse: Spappupgsvorsorgung und I/O [V1]	1	73
	11 17 2	Anschluss: Motor Geber Bremse Frweiterungen	1	74
11 18	Stockyo	rhinder am DIS-2 18/10-FB	1	75
11.10	11 18 1	Anschluss: Spannungsversorgung und I/O [X1]	י 1	75
	11.18.2	Anschluss: Motor. Geber. Bremse. Erweiterungen	1	76
	11.18.3	Anschluss: Bremswiderstand [X304 – X305]	1	76
	11.18.4	Anschluss: CAN-Bus X401 und X402	1	78
	11.18.5	Anschluss: Serielle Parametrierschnittstelle X5	1	79
	11.18.6	Anschluss: Erweiterungssteckplatz [X8]	1	80
11.19	Elektrisc	the Installation des DIS-2 48/10 im System	1	82
	11.19.1	Anschluss an die Versorgung und die Steuerung	1	82
	11.19.2 11 10 2	NOT-AUS / NOT-HALT Verdrahtungsbeisniele	1 1	83 85
11 00		a zur sisharan und EMV assastan Installation	- -	00
11.20			10	09
	11.20.1	Allgemeines zur FMV/	1	89
	11.20.3	EMV Bereiche: erste und zweite Umgebung	1	89

11.20.4	Anschluss zwischen DIS-2 und Motor	190
11.20.5	Anschluss zwischen DIS-2 und Netzteil	190

Abbildungsverzeichnis:

Abbildung 1: Sprungantwort Stromregler	37
Abbildung 2: Blockschaltbild Reglerkaskade	49
Abbildung 3: Drehzahlregler – zu weich	52
Abbildung 4: Drehzahlregler zu hart	52
Abbildung 5: Drehzahlregler – richtig eingestellt	53
Abbildung 6: Blockschaltbild Positioniersteuerung	57
Abbildung 7: Optimierung Lageregler	60
Abbildung 8: Zeitoptimales und ruckbegrenztes Positionieren	64
Abbildung 9: Referenzfahrt auf den negativen Endschalter mit Auswertung des Nullimpulses	67
Abbildung 10: Referenzfahrt auf den positiven Endschalter mit Auswertung des Nullimpulses	67
Abbildung 11: Referenzfahrt auf den negativen Endschalter	68
Abbildung 12: Referenzfahrt auf den positiven Endschalter	68
Abbildung 13: Referenzfahrt nur auf den Nullimpuls bezogen	68
Abbildung 14: Referenzfahrt auf den negativen Anschlag mit Auswertung des Nullimpulses	69
Abbildung 15: Referenzfahrt auf den positiven Anschlag mit Auswertung des Nullimpulses	69
Abbildung 16: Referenzfahrt auf den negativen Anschlag	69
Abbildung 17: Referenzfahrt auf den positiven Anschlag	70
Abbildung 18: Wegprogramm - Positionsverzweigung	78
Abbildung 19: Zeitdiagramm Positionsverzweigung	79
Abbildung 20: Wegprogramm - Sprungverzweigung	80
Abbildung 21: Zeitdiagramm Sprungverzweigung	.80
Abbildung 22: Wegprogramm Pegelabfrage	81
Abbildung 23: Zeitdiagramm Pegelabfrage	81
Abbildung 24: Teachen einer Zielposition	89
Abbildung 25: Koppelung Inkrementalgeberemulation	93
Abbildung 26: Zeitverhalten Haltebremse	95
Abbildung 27: Sichere Null	96
Abbildung 28: Online-Parametrierung 1	52
Abbildung 29: Offline-Parametrierung 1	56
Abbildung 30: Anordnung Steckverbinder DIS-2 – Draufsicht der Elektronikbaugruppe 1	66
Abbildung 31: Gehäuseabmessungen 1	67
Abbildung 32: DIS-2 Applikationsbeispiel– Synchron Servo Motor im Leistungsbereich 500W mit Servopositionierregler DIS-2 und Getriebe für eine Lenkanwendung 1	68

Abbildung 33: Pinnummerierung X1 DIS-2 48/10 169)
Abbildung 34: Anschluss Winkelgeber 170)
Abbildung 35: Anschluss Motorkabel 171	
Abbildung 36: Anschluss Haltebremse 171	
Abbildung 37: Anschluss Technologiemodul 172)
Abbildung 38: Pinnummerierung X1 DIS-2 48/10-IC 173	;
Abbildung 39: Pinnummerierung X1 DIS-2 48/10-FB 175	;
Abbildung 40: Anschluss Bremswiderstand 176	;
Abbildung 41: Position und Pinnummerierung X401, X402 und X5 am DIS-2 48/10-FB 178	;
Abbildung 42: Position Anschluss Technologiemodul: 180)
Abbildung 43: Anschluss an Spannungsversorgung, Steuerung und Motor 182	<u>}</u>
Abbildung 44: Beispielverdrahtung für die Netzversorgung mit NOTAUS / NOTHALT 187	,
Abbildung 45: Anschluss DIS-2 an das Netzteil, Schirmauflage am Chassis	
Abbildung 46: Anschluss DIS-2 an das Netzteil, Schirmauflage über Kabel	

Tabellenverzeichnis:

Tabelle 1: Lieferumfang	17
Tabelle 2: Zubehör Parametrierprogramm	17
Tabelle 3: Zubehör DIS-2 48/10	18
Tabelle 4: Zubehör DIS-2 48/10 IC und DIS-2 48/10 FB	18
Tabelle 5: Parameter Winkelgeber	32
Tabelle 6: Anzeigemodus	41
Tabelle 7: Fehlerbehebung: Drehzahlregelung	47
Tabelle 8: Wegprogramm: Belegung der digitalen Eingänge (Standard)	74
Tabelle 9: Wegprogramm: Belegung der digitalen Eingänge (Neue I/O Belegung)	74
Tabelle 10: Verfügbare Positionssätze bei Aktivem Wegprogramm und Eingang WEG = 0	75
Tabelle 11: DIS-2 48/10 Digitale Eingänge – Kombinationsmöglichkeiten	84
Tabelle 12:DIS-2 48/10-IC Digitale Eingänge – Kombinationsmöglichkeiten	84
Tabelle 13: DIS-2 48/10-FB Digitale Eingänge – Kombinationsmöglichkeiten	84
Tabelle 14: Digitale Eingänge – Belegung	85
Tabelle 15: Tipp & Teach: Belegung der digitalen Eingänge	88
Tabelle 16: Fehlerübersicht	108
Tabelle 17: Steuerelemente	115
Tabelle 18: Verzeichnisstruktur	117
Tabelle 19: Problembehebung bei serieller Kommunikation	119
Tabelle 20: Befehlssyntax KO's	128
Tabelle 21: Buchstabenbedeutung in der Befehlssyntax	128
Tabelle 22: Befehlssyntax RS232	129
Tabelle 23: Buchstabenbedeutung in der Befehlssyntax	129
Tabelle 24: Liste aller KOs	130
Tabelle 25: Liste der Basiseinheiten	137
Tabelle 26: Online-Offline-Aktivierung	156
Tabelle 27: Belegung Steckverbinder [X1]	169
Tabelle 28: Belegung Steckverbinder [X2]	170
Tabelle 29: Belegung Steckverbinder [X301 – X303]	171
Tabelle 30: Belegung Steckverbinder [X3]	171
Tabelle 31: Belegung Steckverbinder [X8]	172
Tabelle 32: Belegung Steckverbinder [X1]	173
Tabelle 33: Belegung Steckverbinder [X1]	175

Tabelle 34: Belegung Steckverbinder [X304, X305]	177
Tabelle 35: Belegung Steckverbinder [X01] und [X402]	178
Tabelle 36: Belegung Steckverbinder [X5]	179
Tabelle 37: Pinzuordnung für die Herstellung eines RS232-Adapterkabels zum PC / Notebook	179
Tabelle 38 (A): Belegung Steckverbinder [X8]	180
Tabelle 39: Beschreibung der Anforderung für die Kategorien nach EN 954-1	184
Tabelle 40: NOT-AUS und NOT-HALT nach EN 60204-1	184
Tabelle 41: Stoppkategorien	185

1 Allgemeines

1.1 In diesem Handbuch verwendete Symbole

Information

Wichtige Informationen und Hinweise.

Vorsicht!

Die Nichtbeachtung kann hohe Sachschäden zur Folge haben.

GEFAHR !

Die Nichtbeachtung kann Sachschäden und Personenschäden zur Folge haben.

Vorsicht! Lebensgefährliche Spannung. Der Sicherheitshinweis enthält einen Hinweis auf eine eventuell auftretende lebensgefährliche Spannung.

1.2 Leistungsmerkmale und Anwendungsbereich des DIS-2

1.2.1 Grundlegende Informationen

Die Servopositionierregler der DIS-2 Reihe (**D**ezentraler Intelligenter **S**ervo **2**. Generation) sind intelligente Servoumrichter mit umfangreichen Parametriermöglichkeiten. Sie lassen sich dadurch flexibel an eine Vielzahl verschiedenartiger Anwendungsmöglichkeiten anpassen.

Typenschlüssel:

1.2.2 Anwendungsbereich und bestimmungsgemäße Verwendung

Der Servopositionierregler DIS-2 wurde konzipiert für die dezentrale Ansteuerung und Regelung von dreiphasigen permanentmagneterregten Synchronmaschinen. Durch eine Vielzahl von Optionen für die Rückführung und durch verschiedene Ansteuerverfahren, wie "Blockkommutierung" und "Sinuskommutierung" kann der Regler optimal an die Charakteristik des Motors angepasst werden.

Er wird normalerweise direkt am Motor montiert, es ist aber auch möglich, den DIS-2 vom Motor abzusetzen und über ein kurzes geschirmtes Kabel mit dem Motor zu verbinden. Weitere Informationen zur Installation befinden sich im Anhang *Kapitel 11.15 Mechanische Installation*.

Der Servopositionierregler DIS-2 wird aus einem Netzteil oder aus einer Batterie mit 24 V DC bzw. 48 V DC Schutzkleinspannung gespeist. Am Motoranschluss speist er die Synchronmaschine mit einem pulsweitenmodulierten symmetrischen 3phasigen Drehfeld mit variabler Frequenz, Strom und Spannung.

Der DIS-2 wurde konzipiert für die stufenlose Regelung des Drehmomentes, der Drehzahl und der Lage in typischen industriellen Anwendungsbereichen, wie z.B.:

- Positionier- und Zustellantriebe in Maschinen
- Palletier- und Verpackungsmaschinen
- Holzverarbeitende Maschinen
- Wickelantriebe, Drahtziehantriebe usw.
- Antriebe in der Schraub- und Presstechnik
- Anwendungen in der Fördertechnik

Vor dem Einsatz des DIS-2 in speziellen Anwendungsfeldern mit erhöhten normativen Anforderungen, z.B. der Medizintechnik oder Avionik, sowie erhöhten Anforderungen an die Gerätesicherheit muss der Anwender im Einzelfall prüfen, ob der DIS-2 die entsprechenden fachspezifischen Normen erfüllt. Bitte kontaktieren Sie im Zweifelsfall Ihren Vertriebspartner.

Der DIS-2 darf nur unter den vorgegebenen Betriebsbedingungen und unter Beachtung seiner technischen Daten, die im Anhang *Kapitel 11.14 Technische Daten* aufgeführt sind, eingesetzt werden. Des weiteren sind die vorgeschriebenen Montage-, Inbetriebnahme-, Demontage-, und Instandhaltungsvorschriften zu beachten.

1.2.3 Leistungsmerkmale des DIS-2

Der DIS-2 besitzt die folgenden Leistungsmerkmale:

- Kompakte Bauform, das fünfseitig geschlossene Gehäuse ist direkt oder mit einer Adapterplatte auf dem Motor montierbar.
- Hohe Güte der Regelung durch eine hochwertige Sensorik.
- Volle Integration aller Komponenten f
 ür Controller- und Leistungsteil einschlie
 ßlich RS232-Interface f
 ür die PC-Kommunikation, CANopen Interface f
 ür die Integration in Automatisierungssysteme.
- Integrierte universelle Drehgeberauswertung f
 ür folgende Geber:
 - Resolver

- analoge Hallsensoren mit SIN-/COS-Signalen (auf Anfrage)
- hochauflösende Stegmann-Inkrementalgeber, Absolutgeber mit HIPERFACE
- Six Step Hallgeber
- > Inkrementalgeber mit Kommutierungssignalen
- Integrierte Treiberstufe f
 ür 24 V Haltebremsen
- Einhaltung der aktuellen CE- und EN-Normen ohne zusätzliche externe Filtermaßnahmen.
- EMV optimiertes Metallgehäuse für die Befestigung direkt auf dem Motor. Das Gerät verfügt über Schutzart IP54, abhängig von der Montage und der Dichtungen kann bis zu IP67 erreicht werden.
- Integration aller f
 ür die Erf
 üllung der EMV Vorschriften im Betrieb (Industriebereich) notwendigen Filter im Ger
 ät, z.B. Filter f
 ür die 24V-Versorgung sowie die Ein- und Ausg
 änge.
- Betrieb als Drehmomentregler, Drehzahlregler oder Lageregler.
- Integrierte Positioniersteuerung mit umfangreicher Funktionalität gemäß CAN in Automation (CiA) DSP402 und zahlreichen anwendungsspezifischen Zusatzfunktionen.
- Ruckfreies oder zeitoptimales Positionieren relativ oder absolut zu einem Referenzpunkt.
- Punkt zu Punkt Positionierung mit und ohne Überschleifen.
- Drehzahl- und Winkelsynchronlauf mit elektronischem Getriebe über Feldbus.
- Vielfältige Referenzfahrtmethoden.
- Umschaltbare Taktfrequenz f
 ür die Endstufe.
- Integriertes Wegprogramm zur Erstellung einfacher Positionierabläufe mit oder ohne Abhängigkeit von digitalen Eingängen.
- Programmierbare digitale Ausgänge.
- Hochauflösender 12-Bit Analogeingang.
- Anwenderfreundliche Parametrierung mit dem PC-Programm DIS-2 ServoCommander[™].
- Automatische Motoridentifikation.
- Einfache Ankopplung an eine übergeordnete Steuerung, z. B. an eine SPS über die E/A-Ebene oder über Feldbus.
- Technologie Steckplatz f
 ür Erweiterungen, z.B. Feldbussanbindungen (nur DIS-2 48/10 FB)
- I²t-Überwachung zur Begrenzung der mittleren Verlustleistung in der Leistungsendstufe und im Motor.
- Integrierter Bremschopper (nur DIS-2 48/10 FB)
- Separater RS232 und Feldbus Anschluß (nur DIS-2 48/10-FB)

1.3 Leistungsmerkmale des DIS-2 ServoCommander[™]

1.3.1 Grundlegende Informationen

Das Parametrierprogramm erlaubt die komfortable Parametrierung des Servopositionierreglers DIS-2. Sie können mit der Parametriersoftware den Servopositionierregler DIS-2 optimal an Ihre Applikation anpassen.

Die Firmware des Servopositionierreglers DIS-2 und Parametriersoftware müssen aufeinander abgestimmt sein, d.h., dass bei Funktionserweiterungen einer neuen Firmware-Version in der Regel auch eine entsprechende Version des Parametrierprogramms benötigt wird.

Mit der Parametriersoftware können keine anderen Geräte der Firma Metronix parametriert werden!

1.3.2 Leistungsmerkmale des DIS-2 ServoCommander[™]

Das Parametrierprogramm bietet folgende Leistungsmerkmale:

- Parametrierung des Servopositionierreglers DIS-2.
- Einstellung sämtlicher Parameter über den PC.
- Anzeigen von Betriebsgrößen.
- ✤ Laden von neuen Firmware-Versionen.
- ✤ Laden und Speichern von Parametersätzen.
- Drucken von Parametersätzen.
- Offline Parametrierung.
- Oszilloskopfunktion.
- Sprachunterstützung: deutsch, englisch, französisch.
- Windows-konforme Bedienung.
- Wegprogramm.

1.3.3 Hard- und Software-Voraussetzungen

Voraussetzungen für die Installation des Parametrierprogramms:

- IBM-kompatibler PC-AT, ab Pentium II-Prozessor mit min. 32 MB Hauptspeicher und min. 10 MB freiem Festplattenspeicher.
- Betriebssystem Windows[®] 95, Windows[®] 98, Windows NT[®], Windows 2000, Windows XP[®]
- CD-ROM-Laufwerk.
- Freie serielle Schnittstelle.

1.4 Dokumentation

Dieses Softwarehandbuch dient zum sicheren Arbeiten mit dem Parametrierprogramm DIS-2 ServoCommander[™] für den Servopositionierregler DIS-2.

Weitergehende Informationen finden sich in folgenden Handbüchern zur DIS-2 Produktfamilie:

- CANopen Handbuch "CanOpen_Handbuch_DIS-2": Beschreibung des implementierten CANopen Protokolls gemäß DSP402.
- Montageanleitung "Mountinginstructions_DIS-2": Anleitung zum Anschlusses des Servopositionierregler DIS-2.

Der Servopositionierregler verfügt über einen FLASH-Programmspeicher, der ein Update der Betriebssoftware des Reglers auch nach Auslieferung und Einbau in die Maschine ermöglicht. Die Betriebssoftware des Reglers wird vom Hersteller kontinuierlich weiterentwickelt und erweitert, um einer möglichst breiten Palette von Kundenanforderungen gerecht zu werden.

> Die in diesem Handbuch aufgeführten Informationen beziehen sich auf folgende Versionen der Betriebssoftware des Reglers und des Parametrierprogramms:

Servopositionierregler DIS-2-Firmware:Version 3.0Parametrier-Software:Version 2.1

1.5 Lieferzustand und Lieferumfang

Die Lieferung umfasst:

ົງໃ

Tabelle 1: Lieferumfang

1 x	Servopositionierregler DIS-2
	Lieferzustand: Defaultparametersatz für den Betrieb eines Resolvermotors.

Tabelle 2: Zubehör Parametrierprogramm

1x	DIS-2 ServoCommander Windows [®] -Parametrierprogramm deu./engl./franz.	Metronix-Bestellnummer: 9019-0900-00
----	--	--------------------------------------

Gegenstecker für Leistungs-, Steuer- oder Drehgeberanschlüsse gehören nicht zum Standard Lieferumfang. Sie können jedoch als Zubehör bestellt werden:

Tabelle 3: Zubehör DIS-2 48/10

1x	Steckersatz: AMP Steckverbinder		MP Steckverbinder	Metronix-Bestellnummer: 9019-0200-00
	Inhalt: 1x 16-poliger AMP Gegegenstecker, incl. Crimpkontakte		16-poliger AMP Gegegenstecker, incl. Crimpkontakte	
	1x 16-poliger Gegenstecker für Win- kelgeber, incl. Crimpkontakte		16-poliger Gegenstecker für Win- kelgeber, incl. Crimpkontakte	
		1x	2-poliger Gegenstecker für Halte- bremse, incl. Crimpkontakte	
1x	Bedienpult DIS-2 mit AMP Steckverbinder		S-2 mit AMP Steckverbinder	Metronix-Bestellnummer: 9019-0300-00

Tabelle 4: Zubehör DIS-2 48/10 IC und DIS-2 48/10 FB

1x	Steckersatz: Phoenix Steckverbinder (für DIS-2 IC und DIS-2 FB geeignet !) Inhalt: 1x 18-poliger Phoenix Gegegenstecker, bestehend aus: VARICON Gegenstecker, Tüllenrahmen und Tüllengehäuse		hoenix Steckverbinder nd DIS-2 FB geeignet !)	Metronix-Bestellnummer: 9019-0210-00	
			18-poliger Phoenix Gegegenstecker, bestehend aus: VARICON Gegenstecker, Tüllenrahmen und Tüllengehäuse		
		1x	16-poliger Gegenstecker für Win- kelgeber, incl. Crimpkontakte		
		1x	2-poliger Gegenstecker für Halte- bremse, incl. Crimpkontakte		
1x	Bedienpult DIS-2 IC mit Phoenix Steckverbinder		-2 IC mit Phoenix Steckverbinder	Metronix-Bestellnummer: 9019-0310-00	
1x	Bedienpult DIS-2 FB mit Phoenix Steckverbinder		-2 FB mit Phoenix Steckverbinder	Metronix-Bestellnummer: 9019-0320-00	
1x	RS232 Anschlusskabel für DIS-2 48/10 FB Fertig konfektioniertes Anschlusskabel für die Reglerparametrierung, Länge ca. 150 cm, M8 Rundsteckverbinder für den Anschluss am Regler, DSUB9-Steckverbinder für den Anschluss an den COM-Port des PCs		usskabel für DIS-2 48/10 FB oniertes Anschlusskabel für die trierung, Länge ca. 150 cm, M8 oinder für den Anschluss am Regler, verbinder für den Anschluss an den PCs	Metronix-Bestellnummer: 9019-0221-00	
1x	Bremswiderstand für DIS-2 48/10 FB Plattenwiderstand, metallux PLR 250, 5 $\Omega \pm 10\%$, 100 W, Abmessungen 55 mm x 43 mm, Höhe: 1,5 mm, im Bereich der Anschlusskabel Höhe 4 mm, mit Litzen I = 100 mm		and für DIS-2 48/10 FB and, metallux PLR 250, 5 $\Omega \pm 10\%$, sungen 55 mm x 43 mm, Höhe: 1,5 h der Anschlusskabel Höhe 4 mm, 00 mm	Metronix-Bestellnummer: 9519-0001-00	

2 Sicherheitshinweise für elektrische Antriebe und Steuerungen

2.1 Allgemeine Hinweise

រាំ

Bei Schäden infolge von Nichtbeachtung der Warnhinweise in dieser Betriebsanleitung übernimmt die Metronix Meßgeräte und Elektronik GmbH keine Haftung.

Wenn die Dokumentation in der vorliegenden Sprache nicht einwandfrei verstanden wird, bitte beim Lieferant anfragen und diesen informieren.

Der einwandfreie und sichere Betrieb des Servopositionierreglers setzt den sachgemäßen und fachgerechten Transport, die Lagerung, die Montage und die Installation sowie die sorgfältige Bedienung und die Instandhaltung voraus. Für den Umgang mit elektrischen Anlagen ist ausschließlich ausgebildetes und qualifiziertes Personal einsetzen:

AUSGEBILDETES UND QUALIFIZIERTES PERSONAL im Sinne dieses Produkthandbuches bzw. der Warnhinweise auf dem Produkt selbst sind Personen, die mit der Aufstellung, der Montage, der Inbetriebsetzung und dem Betrieb des Produktes sowie mit allen Warnungen und Vorsichtsmaßnahmen gemäß dieser Betriebsanleitung in diesem Produkthandbuch ausreichend vertraut sind und über die ihrer Tätigkeit entsprechenden Qualifikationen verfügen:

- Ausbildung und Unterweisung bzw. Berechtigung, Geräte/Systeme gemäß den Standards der Sicherheitstechnik ein- und auszuschalten, zu erden und gemäß den Arbeitsanforderungen zweckmäßig zu kennzeichnen.
- Ausbildung oder Unterweisung gemäß den Standards der Sicherheitstechnik in Pflege und Gebrauch angemessener Sicherheitsausrüstung.
- Schulung in Erster Hilfe.

Die nachfolgenden Hinweise sind vor der ersten Inbetriebnahme der Anlage zur Vermeidung von Körperverletzungen und/oder Sachschäden zu lesen:

ງໄ

ון

Diese Sicherheitshinweise sind jederzeit einzuhalten.

Versuchen Sie nicht, den Servopositionierregler zu installieren oder in Betrieb zu nehmen, bevor Sie nicht alle Sicherheitshinweise für elektrische Antriebe und Steuerungen in diesem Dokument sorgfältig durchgelesen haben. Diese Sicherheitsinstruktionen und alle anderen Benutzerhinweise sind vor jeder Arbeit mit dem Servopositionierregler durchzulesen.

Sollten Ihnen keine Benutzerhinweise für den Servopositionierregler zur Verfügung stehen, wenden Sie sich an Ihren zuständigen Vertriebsrepräsentanten. Verlangen Sie die unverzügliche Übersendung dieser Unterlagen an den oder die Verantwortlichen für den sicheren Betrieb des Servopositionierreglers.

Bei Verkauf, Verleih und/oder anderweitiger Weitergabe des Servopositionierreglers sind diese Sicherheitshinweise ebenfalls mitzugeben.

Ein Öffnen des Servopositionierreglers durch den Betreiber ist aus Sicherheits- und Gewährleistungsgründen nicht zulässig.

Die Voraussetzung für eine einwandfreie Funktion des Servopositionierreglers ist eine fachgerechte Projektierung!

GEFAHR!

Unsachgemäßer Umgang mit dem Servopositionierregler und Nichtbeachten der hier angegebenen Warnhinweise sowie unsachgemäße Eingriffe in die Sicherheitseinrichtung können zu Sachschaden, Körperverletzung, elektrischem Schlag oder im Extremfall zum Tod führen.

2.2 Gefahren durch falschen Gebrauch

GEFAHR!

Hohe elektrische Spannung und hoher Arbeitsstrom!

Lebensgefahr oder schwere Körperverletzung durch elektrischen Schlag!

GEFAHR!

Hohe elektrische Spannung durch falschen Anschluss!

Lebensgefahr oder Körperverletzung durch elektrischen Schlag!

GEFAHR!

Heiße Oberflächen auf dem Gerätegehäuse möglich!

Verletzungsgefahr! Verbrennungsgefahr!

GEFAHR!

Gefahrbringende Bewegungen!

Lebensgefahr, schwere Körperverletzung oder Sachschaden durch unbeabsichtigte Bewegungen der Motoren!

2.3 Sicherheitshinweise

2.3.1 Allgemeine Sicherheitshinweise

Der Servopositionierregler entspricht der Schutzklasse IP54, sowie der Verschmutzungsklasse 1. Es ist darauf zu achten, dass die Umgebung dieser Schutz- bzw. Verschmutzungsklasse entspricht.

Nur vom Hersteller zugelassene Zubehör- und Ersatzteile verwenden.

Die Servopositionierregler und die verwendeten Stromversorgungen müssen entsprechend den EN-Normen und VDE-Vorschriften so an das Netz angeschlossen werden, dass sie mit geeigneten Freischaltmitteln (z.B. Hauptschalter, Schütz, Leistungsschalter) vom Netz getrennt werden können.

Zum Schalten der Steuerkontakte sollten vergoldete Kontakte oder Kontakte mit hohem Kontaktdruck verwendet werden.

Vorsorglich müssen Entstörungsmaßnahmen für Schaltanlagen getroffen werden, wie z.B. Schütze und Relais mit RC-Gliedern bzw. Dioden beschalten.

Es sind die Sicherheitsvorschriften und -bestimmungen des Landes, in dem das Gerät zur Anwendung kommt, zu beachten.

Die in der Produktdokumentation angegebenen Umgebungsbedingungen müssen eingehalten werden. Sicherheitskritische Anwendungen sind nicht zugelassen, sofern sie nicht ausdrücklich vom Hersteller freigegeben werden.

	1
ና	
۷	5

Die Hinweise für eine EMV gerechte Installation sind in dem *Kapitel 11.17* zu entnehmen. Die Einhaltung der durch die nationalen Vorschriften geforderten Grenzwerte liegt in der Verantwortung der Hersteller der Anlage oder Maschine.

Die technischen Daten, die Anschluss- und Installationsbedingungen für den Servopositionierregler sind aus diesem Produkthandbuch zu entnehmen und unbedingt einzuhalten.

GEFAHR!

Es sind die Allgemeinen Errichtungs- und Sicherheitsvorschriften für das Arbeiten an Starkstromanlagen (z.B. DIN, VDE, EN, IEC oder andere nationale und internationale Vorschriften) zu beachten.

Nichtbeachtung können Tod, Körperverletzung oder erheblichen Sachschaden zur Folge haben.

Ohne Anspruch auf Vollständigkeit gelten unter anderem folgende Vorschriften:

VDE 0100	Bestimmung für das Errichten von Starkstromanlagen bis 1000 Volt
EN 60204	Elektrische Ausrüstung von Maschinen
EN 50178 teln	Ausrüstung von Starkstromanlagen mit elektronischen Betriebsmit-

2.3.2 Sicherheitshinweise bei Montage und Wartung

Für die Montage und Wartung der Anlage gelten in jedem Fall die einschlägigen DIN, VDE, EN und IEC - Vorschriften, sowie alle staatlichen und örtlichen Sicherheits- und Unfallverhütungsvorschriften. Der Anlagenbauer bzw. der Betreiber hat für die Einhaltung dieser Vorschriften zu sorgen:

Die Bedienung, Wartung und/oder Instandsetzung des Servopositionierreglers darf nur durch für die Arbeit an oder mit elektrischen Geräten ausgebildetes und qualifiziertes Personal erfolgen.

Vermeidung von Unfällen, Körperverletzung und/oder Sachschaden:

Vertikale Achsen gegen Herabfallen oder Absinken nach Abschalten des Motors zusätzlich sichern, wie durch:

- > mechanische Verriegelung der vertikalen Achse,
- externe Brems-/ Fang-/ Klemmeinrichtung oder
- > ausreichenden Gewichtsausgleich der Achse.

Die eingebaute Motor-Haltebremse oder eine externe, vom Antriebsregelgerät angesteuerte Motor-Haltebremse allein ist nicht für den Personenschutz geeignet!

Die elektrische Ausrüstung über den Hauptschalter spannungsfrei schalten und gegen Wiedereinschalten sichern, warten bis der Zwischenkreis entladen ist bei:

- > Wartungsarbeiten und Instandsetzung
- > Reinigungsarbeiten
- Iangen Betriebsunterbrechungen

Vor der Durchführung von Wartungsarbeiten ist sicherzustellen, dass die Stromversorgung abgeschaltet, verriegelt und der Zwischenkreis entladen ist.

Bei der Montage ist sorgfältig vorzugehen. Es ist sicherzustellen, dass sowohl bei Montage als auch während des späteren Betriebes des Antriebs keine Bohrspäne, Metallstaub oder Montageteile (Schrauben, Muttern, Leitungsabschnitte) in den Servopositionierregler fallen.

Ebenfalls ist sicherzustellen, dass die externe Spannungsversorgung des Reglers (24V) abgeschaltet ist.

Ein Abschalten des Zwischenkreises oder der Netzspannung muss immer vor dem Abschalten der 24V Reglerversorgung erfolgen.

Die Arbeiten im Maschinenbereich sind nur bei abgeschalteter und verriegelter Wechselstrom- bzw. Gleichstromversorgung durchzuführen. Abgeschaltete Endstufen oder abgeschaltete Reglerfreigabe sind keine geeigneten Verriegelungen. Hier kann es im Störungsfall zum unbeabsichtigten Verfahren des Antriebes kommen.

Die Inbetriebnahme mit leerlaufenden Motoren durchführen, um mechanische Beschädigungen, z.B. durch falsche Drehrichtung zu vermeiden.

Elektronische Geräte sind grundsätzlich nicht ausfallsicher. Der Anwender ist dafür verantwortlich, dass bei Ausfall des elektrischen Geräts seine Anlage in einen sicheren Zustand geführt wird.

Der Servopositionierregler kann hohe Temperaturen annehmen, die bei Berührung schwere körperliche Verbrennungen verursachen können.

2.3.3 Schutz gegen Berühren elektrischer Teile

Dieser Abschnitt betrifft nur Geräte und Antriebskomponenten mit Spannungen über 50 Volt. Werden Teile mit Spannungen größer 50 Volt berührt, können diese für Personen gefährlich werden und zu elektrischem Schlag führen. Beim Betrieb elektrischer Geräte stehen zwangsläufig bestimmte Teile dieser Geräte unter gefährlicher Spannung.

GEFAHR!

Hohe elektrische Spannung!

Lebensgefahr, Verletzungsgefahr durch elektrischen Schlag oder schwere Körperverletzung!

Für den Betrieb gelten in jedem Fall die einschlägigen DIN, VDE, EN und IEC - Vorschriften, sowie alle staatlichen und örtlichen Sicherheits- und Unfallverhütungsvorschriften. Der Anlagenbauer bzw. der Betreiber hat für die Einhaltung dieser Vorschriften zu sorgen:

Vor dem Einschalten die dafür vorgesehenen Abdeckungen und Schutzvorrichtungen für den Berührschutz an den Geräten anbringen. Für Einbaugeräte ist der Schutz gegen direktes Berühren elektrischer Teile durch ein äußeres Gehäuse, wie beispielsweise einen Schaltschrank, sicherzustellen. Die Vorschriften VGB4 sind zu beachten!

Den Schutzleiter der elektrischen Ausrüstung und der Geräte stets fest an das Versorgungsnetz anschließen.

Nach der Norm EN60617 den vorgeschriebenen Mindest-Kupfer-Querschnitt für die Schutzleiterverbindung in seinem ganzen Verlauf beachten!

Vor Inbetriebnahme, auch für kurzzeitige Mess- und Prüfzwecke, stets den Schutzleiter an allen elektrischen Geräten entsprechend dem Anschlussplan anschließen oder mit Erdleiter verbinden. Auf dem Gehäuse können sonst hohe Spannungen auftreten, die elektrischen Schlag verursachen.

Elektrische Anschlussstellen der Komponenten im eingeschalteten Zustand nicht berühren.

Vor dem Zugriff zu elektrischen Teilen mit Spannungen größer 50 Volt das Gerät vom Netz oder von der Spannungsquelle trennen. Gegen Wiedereinschalten sichern.

Bei der Installation ist besonders in Bezug auf Isolation und Schutzmaßnahmen die Höhe der Zwischenkreisspannung zu berücksichtigen. Es muss für ordnungsgemäße Erdung, Leiterdimensionierung und entsprechenden Kurzschlussschutz gesorgt werden.

2.3.4 Schutz durch Schutzkleinspannung (PELV) gegen elektrischen Schlag

Alle Anschlüsse und Klemmen mit Spannungen von 5 bis 50 Volt an dem Servopositionierregler sind Schutzkleinspannungen, die entsprechend folgender Normen berührungssicher ausgeführt sind:

- International: IEC 60364-4-41.
- Europäische Länder in der EU: EN 50178/1998, Abschnitt 5.2.8.1.

GEFAHR!

Hohe elektrische Spannung durch falschen Anschluss!

Lebensgefahr, Verletzungsgefahr durch elektrischen Schlag!

An alle Anschlüsse und Klemmen mit Spannungen von 0 bis 50 Volt dürfen nur Geräte, elektrische Komponenten und Leitungen angeschlossen werden, die eine Schutzkleinspannung (PELV = Protective Extra Low Voltage) aufweisen.

Nur Spannungen und Stromkreise, die sichere Trennung zu gefährlichen Spannungen haben, anschließen. Sichere Trennung wird beispielsweise durch Trenntransformatoren, sichere Optokoppler oder netzfreien Batteriebetrieb erreicht.

2.3.5 Schutz vor gefährlichen Bewegungen

Gefährliche Bewegungen können durch fehlerhafte Ansteuerung von angeschlossenen Motoren verursacht werden. Die Ursachen können verschiedenster Art sein:

- Unsaubere oder fehlerhafte Verdrahtung oder Verkabelung.
- Fehler bei der Bedienung der Komponenten.
- Fehler in den Messwert- und Signalgebern.
- Defekte oder nicht EMV gerechte Komponenten.
- Fehler in der Software im übergeordneten Steuerungssystem.

Diese Fehler können unmittelbar nach dem Einschalten oder nach einer unbestimmten Zeitdauer im Betrieb auftreten.

Die Überwachungen in den Antriebskomponenten schließen eine Fehlfunktion in den angeschlossenen Antrieben weitestgehend aus. Im Hinblick auf den Personenschutz, insbesondere der Gefahr der Körperverletzung und/oder Sachschaden, darf auf diesen Sachverhalt nicht allein vertraut werden. Bis zum Wirksamwerden der eingebauten Überwachungen ist auf jeden Fall mit einer fehlerhaften Antriebsbewegung zu rechnen, deren Maß von der Art der Steuerung und des Betriebszustandes abhängen.

GEFAHR!

Gefahrbringende Bewegungen!

Lebensgefahr, Verletzungsgefahr, schwere Körperverletzung oder Sachschaden!

Der Personenschutz ist aus den oben genannten Gründen durch Überwachungen oder Maßnahmen, die anlagenseitig übergeordnet sind, sicherzustellen. Diese werden nach den spezifischen Gegebenheiten der Anlage einer Gefahren- und Fehleranalyse vom Anlagenbauer vorgesehen. Die für die Anlage geltenden Sicherheitsbestimmungen werden hierbei mit einbezogen. Durch Ausschalten, Umgehen oder fehlendes Aktivieren von Sicherheitseinrichtungen können willkürliche Bewegungen der Maschine oder andere Fehlfunktionen auftreten.

2.3.6 Schutz gegen Berühren heißer Teile

GEFAHR!

Heiße Oberflächen auf Gerätegehäuse möglich! Verletzungsgefahr! Verbrennungsgefahr!

പ	L/
20/2	

Gehäuseoberfläche in der Nähe von heißen Wärmequellen nicht berühren! Verbrennungsgefahr!

Vor dem Zugriff Geräte nach dem Abschalten erst 10 Minuten abkühlen lassen.

Werden heiße Teile der Ausrüstung wie Gerätegehäuse, in denen sich Kühlkörper und Widerstände befinden, berührt, kann das zu Verbrennungen führen!

2.3.7 Schutz bei Handhabung und Montage

Die Handhabung und Montage bestimmter Teile und Komponenten in ungeeigneter Art und Weise kann unter ungünstigen Bedingungen zu Verletzungen führen.

GEFAHR!

Verletzungsgefahr durch unsachgemäße Handhabung!

Körperverletzung durch Quetschen, Scheren, Schneiden, Stoßen!

Hierfür gelten allgemeine Sicherhinweise:

Die allgemeinen Errichtungs- und Sicherheitsvorschriften zu Handhabung und Montage beachten.

Geeignete Montage- und Transporteinrichtungen verwenden.

Einklemmungen und Quetschungen durch geeignete Vorkehrungen vorbeugen.

Nur geeignetes Werkzeug verwenden. Sofern vorgeschrieben, Spezialwerkzeug benutzen.

Hebeeinrichtungen und Werkzeuge fachgerecht einsetzen.

Wenn erforderlich, geeignete Schutzausstattungen (zum Beispiel Schutzbrillen, Sicherheitsschuhe, Schutzhandschuhe) benutzen.

Nicht unter hängenden Lasten aufhalten.

Auslaufende Flüssigkeiten am Boden sofort wegen Rutschgefahr beseitigen.

3 Vorbereitung der Inbetriebnahme

3.1 Systemübersicht

Der Servopositionierregler DIS-2 wurde so konstruiert, dass er direkt auf den Motor montiert werden kann. Dadurch bildet er zusammen mit dem Motor eine kompakte aufeinander abgestimmte Einheit.

Zum Betrieb müssen lediglich noch die Versorgung sowie evtl. genutzte Ein- und Ausgänge oder Feldbusse angeschlossen werden.

Mit dem Parametrierprogramm DIS-2 ServoCommander[™] kann der Servopositionierregler DIS-2 komfortabel parametriert, in Betrieb genommen und analysiert werden.

3.2 Anschluss des DIS-2 an die Steuerung

Bevor Sie die Versorgungsspannung für den Servopositionierregler DIS-2 zum erstem Mal einschalten, sollten Sie die übergeordnete Steuerung / Ein- und Ausgänge / Feldbusse sowie das Netzteil anschließen, bzw. vollständig verdrahten. Bitte lesen Sie hierzu *Kapitel 11.16.1 Steckverbinder am DIS-2 48/10* im Anhang.

Damit der Servopositionierregler parametriert werden kann, muss die Serielle Schnittstelle des DIS-2 wird mit einem freier COM-Schnittstelle am Notebook / PC verbunden werden.

Bitte prüfen Sie die Verdrahtung und die Höhe der eingestellten Versorgungsspannungen sorgfältig, bevor Sie die Spannungsversorgung das erste Mal einschalten !

Verdrahtungsfehler sind die häufigste Ursache für Funktionsstörungen. Ein Verdrahtungsfehler oder eine zu hohe Betriebsspannung kann auch einen Defekt am Gerät verursachen !

3.3 Installation und Start des DIS-2 ServoCommander[™]

Zur Installation von CD-ROM gehen Sie folgendermaßen vor:

- 1. Legen Sie die CD-ROM im CD-ROM-Laufwerk ihres Computers ein.
- 2. Starten Sie den Windows[®]-Explorer.
- 3. Wechseln Sie auf der CD-ROM in das Verzeichnis DEUTSCH bzw. ENGLISH.
- 4. Starten Sie das Programm SETUP.EXE per Doppelklick.
- 5. Folgen Sie den Anweisungen des Installationsprogramms.

Das Installationsprogramm legt jetzt für Sie eine neue Programmgruppe mit dem Namen "Metronix" an. In dieser Programmgruppe finden Sie den Eintrag "DIS-2 ServoCommander" über den Sie das Parametrierprogramm starten können.

4 Erstparametrierung des Reglers

4.1 Erstinbetriebnahme

4.1.1 Parametersatz bei Auslieferung vom Hersteller

Bei der Auslieferung ist im Servopositionierregler DIS-2 der **Default-Parametersatz** geladen. Der Default-Parametersatz muss durch die Erstinbetriebnahme an die jeweilige Anwendung angepasst werden. Andernfalls besitzt der Servopositionierregler DIS-2 den Status "nicht in Betrieb genommen".

Der **Default-Parametersatz** enthält eine Grundparametrierung des Reglers für den Betrieb als Drehzahlregler mit Sollwertvorgabe über den Analogeingang AINO. Die Reglereinstellungen und die Stromgrenzen sind dabei so niedrig gewählt, dass ein angeschlossener Motor typischer Baugröße bei einem versehentlichen Einschalten der Freigabe zumindest nicht überlastet bzw. zerstört wird.

Die Hersteller-Einstellungen im **Default-Parametersatz** lassen sich restaurieren durch das Menü **Datei/Parametersatz/Default-Parametersatz laden**.

1

Ī

Durch Laden des **Default-Parametersatzes** werden die anwendungsspezifischen Parameter überschrieben und der Reglerstatus auf "nicht in Betrieb genommen" gesetzt. Dies sollte bei der Verwendung dieser Funktion berücksichtigt werden, da somit eine erneute Erstinbetriebnahme erforderlich wird.

4.1.2 Manuelle Erstinbetriebnahme

Falls Sie keinen auf Ihren Motor oder Ihre Applikation abgestimmten Parametersatz haben, sollten die folgenden Menüs in dieser Reihenfolge parametriert werden:

- 1. Parameter/Anwendungsparameter/Grundkonfiguration...
- 2. Optionen/Anzeigeeinheiten...
- 3. Optionen/ Eingabegrenzen...
- 4. Parameter/Geräteparameter/Motordaten... Motoridentifikation über Liste oder Motordatenmenü
- 5. Parameter/Geräteparameter/Winkelgeber-Einstellungen...
- 6. Parameter/Sicherheitsparameter...
- 7. Parameter/Reglerparameter/Stromregler...
- 8. Parameter/Reglerparameter/Drehzahlregler...

- 9. Parameter/Reglerparameter/Lageregler...
- 10. Parameter/Geräteparameter/Temperaturüberwachung...
- 11. Datei/Parametersatz/Parametersatzsichern (Flash) Dauerhafte Speicherung der Parameter im internen Flash des Servos
- Datei/Parametersatz/ Servo >> Datei
 Sicherung des Parametersatzes als Datei (optional)

4.2 Parametrierung über die Motordatenbank

Das Parametrierprogramm DIS-2 ServoCommander[™] verfügt über eine Motordatenbank in der die wichtigsten Daten für verschiedene Motortypen angelegt werden können.

In der Regel erstellt Ihr Vertriebspartner diese Motordatenbank, die alle von Ihm angebotenen Motoren enthält. Fordern Sie die Datenbank bitte gesondert bei ihm an, wenn sie auf Ihrer Installations-CD nicht enthalten sein sollte.

Diese Funktion ist über das Menü <u>Parameter/Geräteparameter/Motordaten/Neuen Motor aussuchen</u> zugänglich. Es wird eine Liste gezeigt, in der Sie den von Ihnen verwendeten Motor anwählen können:

Motorauswahl			
MH3-0270-30-48/T1	•		
Motordaten:			
Winkelgeber:	Resolver	Nennspannung:	30 V
Polzahl:	10	Leerlaufdrehzahl:	3000 U/min
Offset des Winkelgebers:	-95,0*	Statorwiderstand:	0,05 Ohm
Nennstrom, Effektivwert:	20,33 A	Statorinduktivität:	0,20 mH
Maximalstrom, Effektivwert:	32,00 A	Stromregler Verstärkung:	1,71
Maximale Drehzahl:	4000 U/min	Stromregler Zeitkonstante:	1,80 ms
Drehmomentkonstante:	0,12 Nm/A	Drehzahlregler Verstärkung:	0,70
Drehsinn:	rechts	Drehzahlregler Zeitkonstante:	16,00 ms
Verte übernehmen und Dialo	g schließen	X Abbruch ohne Ände	erungen

Wählen Sie den Motor aus, falls Sie ihn in der Liste entdecken und bestätigen Sie den ausgewählten Motor mit Werte übernehmen und Dialog schließen. Andernfalls klicken Sie auf Abbruch ohne Änderungen.

4.3 Grundparametrierung neuer Motoren

4.3.1 Winkelgeber

Der Servopositionierregler DIS-2 unterstützt vier Winkelgeberarten.

- Resolver / analoge Hallsensoren (auf Anfrage) mit SIN-/COS-Signalen
- Stegman SinCos-Geber mit Hiperface-Schnittstelle
- Hallgeber (Six Step)
- Inkrementalgeber mit Hallsensoren (nur DIS-2 FB)

Das Menü zum Einstellen der Winkelgeberparameter wird über <u>Parameter/Geräteparameter/Winkel-</u> geber-Einstellungen aufgerufen.

Winkelgeber	
 Resolver 	
O Analoge Hallgeber	
O SinCos	
🔿 Hallgeber (Six Step)	
Kommutierung	Phasenfolge
O Blockkommutierung	rechts
Sinuskommutierung	○ links
Offset des	-45,0 °
Winkelgebers:	
Automatische Offsetb	estimmung
Drehzahlregler Rückführ	rung
P-Anteil Regler über	Geber O Motor-EMK
I-Anteil Regler über	🖲 Geber 🔿 Motor-EMK
🗸 ок 🗙	Abbruch

Je nach eingestelltem Winkelgeber kann sich das Menü von dem hier abgebildeten unterscheiden, da jeweils unterschiedliche Einstellmöglichkeiten genutzt werden.

Der Motor und der **Winkelgeber** können automatisch oder manuell identifiziert werden. Wenn der Motor noch nicht in einer Anlage eingebaut und die Achse frei beweglich ist, wird ein automatischer Abgleich empfohlen.

Die Funktion kann in folgenden Menüs aufgerufen werden:

- * Parameter/Geräteparameter/Motordaten: Schaltfläche "Automatisch bestimmen"
- Parameter/Geräteparameter/Winkelgeber-Einstellungen: Schaltfläche "Automatische Offsetbestimmung"

Während der automatischen Winkelgeberidentifikation wird der Regler automatisch für mehrere Sekunden eingeschaltet und der Motor wird gezielt mit einem gesteuerten Drehfeld angetrieben. Die automatische Identifikation ermittelt so die folgenden Parameter:

- Polpaarzahl des Motors (nicht bei Six-Step-Hallgeber).
- Winkelgeber Offset, dies ist der Versatz zwischen der Nullmarke des Gebers und magnetischer Symmetrieachse der Wicklung der Phase 1.
- Phasenfolge des Winkelgebers (links, rechts).
- Strichzahl (nur bei SinCos & Inkrementalgeber).

Folgende Voraussetzungen müssen für eine automatische Identifizierung vorhanden sein:

- Der Motor ist vollständig verkabelt.
- Die Zwischenkreisspannung ist vorhanden.
- Der Servopositionierregler ist fehlerfrei.
- Die Welle muss frei beweglich sein.

GEFAHR!

Bevor Sie die Motoridentifikation starten, sind unbedingt die Stromgrenzwerte (Menüpunkt **Parameter/Geräteparameter/Motordaten**) einzustellen, da sonst der Motor zerstört werden kann!

Klicken Sie im Winkelgebermenü auf Automatisch bestimmen.

Es erscheint folgendes Menü:

Vorsicht! Während des Abgleichs setzt sich die Welle für mehrere Sekunden selbsttätig in Bewegung.

Eine erfolgreiche Motoridentifikation erkennt man an folgender Meldung:

Motoridentifikation	
	Identifikation erfolgreich!

Wenn ein Fehler aufgetreten ist, erhält man folgende Meldung:

Falls eine automatische Bestimmung nicht durchführbar ist, müssen die Winkelgeberdaten manuell eingegeben werden.

Dieses Problem kann in folgenden Fällen auftreten:

- Bei "Sondermotoren" mit sehr hohen Polpaarzahl
- Wenn die Motorwelle nicht frei beweglich ist
- Wenn das Massenträgheit des Motors sehr groß ist und der Motor nicht innerhalb der Messzeit auf die eingeprägte Position einschwingt

Die manuelle Bestimmung der Winkelgeberdaten erfordert genaue Kenntnisse über Synchronmaschinen und den verwendeten Geber. Wir empfehlen daher, dass Sie in diesem Fall Ihren Vertriebspartner kontaktieren. Sie müssen folgende Parameter einstellen:

Tabelle 5: Parameter Winkelgeber

	Resolver	SinCos	Hallgeber (Six Step)	Inkrementalgeber mit Hallsensoren
Offset Winkelgeber	Х	Х		Х
Phasenfolge	Х	Х		Х
Offset zweite Spur (Hallgeber)			Х	Х
Phasenfolge zweite Spur			Х	Х
Strichzahl				Х
Nullimpuls (ja/nein)				Х

Vorsicht!

Fehlerhafte Daten für den Winkelgeber können zu unkontrollierten Bewegungen des Antriebs führen. Dies kann u.U. Sachschäden am Motor oder der gesamten Anlage hervorrufen.

Zusätzlich zu den Einstellungen für den Winkelgeber können in diesem Menü auch noch grundlegende Einstellungen für die Regelung vorgenommen werden:

- Kommutierung: Block- oder Sinuskommutiert.
- Drehzahlregler Rückführung: Geber oder Motor-EMK (getrennt für P-Anteil und I-Anteil).

Wenn ein Motor mit analogen Hallsensoren für die Kommutierung verwendt wird, kann ein automatische Abgleich der Gebersignale über die Taste **Automatische Geberoptimierung** gestartet werden. Der DIS-2 ermittelt dann die optimalen Offset-Werte sowie die Amplitudenwerte der SIN- und COS-Spursignale und speichert diese. Die Toleranzen der Geber, aber auch der Geberauswertung im DIS-2 werden so reduziert. Dies führt zu einer Verbesserung des Rundlaufs.

Vorsicht! Auch während diesem Abgleich setzt sich die Welle für ca. 60 Sekunden selbsttätig in Bewegung.

Die Einstellung der Rückführung über die Motor-EMK kann sich positiv auf den Rundlauf des Motors bei Gebern mit schlechter Auflösung (z.B. Hallgeber Six Step) oder geringer Genauigkeit auswirken. Die Rückführung über die Motor-EMK erfordert aber zunächst die Eingabe weiterer elektrischer Kennwerte des Motors im Menü <u>Optionen/Geräteparameter/Motordaten</u>, siehe *Kapitel 4.3.2 Motordaten*.

Vorsicht bei Aktivierung der Rückführung über die Motor-EMK ! Die tatsächliche Drehzahl des Motors kann signifikant vom Sollwert abweichen, wenn die Funktion und die Motordaten nicht korrekt parametriert wurden. Auch die Toleranzen der Magnete und Wicklungen der Motoren in der Serie wirken sich auf das Ergebnis aus.

Ein guter Kompromiss im Rundlauf bei gleichzeitig guter stationärer Genauigkeit ergibt sich, wenn nur der P-Anteil des Drehzahlreglers auf das EMK-Modell geschaltet wird.

4.3.2 Motordaten

Dieses Menü muss durchlaufen werden, wenn der Motor nicht anhand der Liste identifiziert werden konnte.

rundparameter erweiterte Parameter		
Neuen M	otor aussuchen	
Grenzwerte		
Maximalstrom in A, Effektivwert:	4,00 A	4,00 A
Nennstrom in A, Effekti vw ert:	2,04 A	2,03 A
Pt-Zeit Motor:	2000 ms	2000 ms
		Endstufe
Anzahl der Pole: 4 💓 = 2 Paar Automatisch bestimmen	e Drehmome konstante	ent-
✓ <u>O</u> K X Abbru <u>c</u> h		

Diese Funktion ist über das Menü <u>Optionen/Geräteparameter/Motordaten</u> zugänglich. Im diesem Menü können der Maximal- und der Nennstrom des verwendeten Motors eingetragen werden. Geben

Sie die Daten anhand des Typenschildes ein. Die Drehmomentkonstante können Sie sich durch den Quotienten aus Nennmoment / Nennstrom errechnen.

Beachten Sie, dass es sich bei den einzutragenden Werten für Maximalstrom und Nennstrom um Effektivwerte handelt! Bei zu hohen Strömen wird der Motor zerstört, da die Permanentmagnete im Motor entmagnetisiert werden. Die vom Hersteller angegebenen Stromgrenzwerte dürfen deshalb nicht überschritten werden.

Die maximalen Stromgrenzwerte können von der Taktfrequenz der Endstufe abhängen. Zur Parametrierung der Taktfrequenz klicken Sie auf die Schaltfläche **Endstufe**. Siehe hierzu auch *Kapitel 4.3.3 Endstufe.*

Weiterhin kann die Polzahl des verwendeten Motors eingetragen werden. Es gibt jedoch auch eine Auto-Identifikationsroutine, die Polzahl und Offsetwinkel des Winkelgebers automatisch ermittelt. Klicken Sie hierzu einfach auf die Schaltfläche **Automatisch bestimmen**.

Verfügt der Motor über Six-Step Hallsensoren, muss die Polzahl des Motors über die Parametriersoftware eingegeben werden.

GEFAHR!

Bevor Sie die Motoridentifikation starten, sind unbedingt die Stromgrenzwerte (Menüpunkt **Parameter/Geräteparameter/Motordaten**) einzustellen, da sonst der Motor zerstört werden kann!

Bei Gebern mit schlechter Auflösung (z.B. Hallgeber Six Step) kann sich die Einstellung der Drehzahlrückführung über die Motor-EMK positiv auf den Rundlauf des Motors auswirken. Bei dem Verfahren der Drehzahlbestimmung über die Motor-EMK wird aus der angelegten Klemmenspannung am Motor unter Berücksichtigung des eingeprägtem Strom mit Hilfe der Motorparameter nach folgender Formel

 $N_{\textit{EMK}} = \left(\!U_{\textit{KL}} - (I_q \times R_{\textit{mot}})\right) \times \frac{N_{\textit{Nenn}}}{U_{\textit{Nenn}}} \text{ ein weiterer Drehzahlistwert des Motors ermittelt.}$

Über die Registerkarte **erweiterte Parameter** können die für die Berechnung der Motor-EMK benötigten Parameter einstellen.

eerlaufdrehzahl: tatorwiderstand: tatorinduktivität: 0,20 mH 0,20 mH 0,19 mH 0,19 mH	lennspannung:	48 V	48 V
tatorinduktivität:	eerlaufdrehzahl:	3000 U/min	3000 U/min
tatorinduktivität: 0,20 mH 0,19 mH	itatorwiderstand:		0 19 Obm
tatorinduktivität: 0,20 mH 0,19 mH		4	0,10 0111
	tatorinduktivität:	0,20 mH	0,19 mH

4.3.3 Endstufe

Dieses Menü (Parameter/Geräteparameter/Endstufe) bestimmt das Verhalten der Endstufe.

Die Taktfrequenz kann zwischen 10kHz und 20kHz umgeschaltet werden.

Bei kleiner Taktfrequenz ist dem Motorlauf u.U. ein singender Ton unterlegt. Legt man auf einen besonders geräuscharmen Motorlauf Wert, ist es zu empfehlen eine Taktfrequenz von 20kHz zu parametrieren. Ebenso sind bei hoher Taktfrequenz die Verluste im Motor etwas reduziert (dafür nehmen die Verluste im Servopositionierregler DIS-2 zu, weshalb die einstellbaren Maximalstromgrenzwerte etwas geringer sind). Auf das Regelungsverhalten hat die Wahl der Taktfrequenz praktisch keinen Einfluss. Die Grundeinstellung der Taktfrequenz der Endstufe beträgt 10 kHz.

Endstufe	
Taktfrequenz	or or
○ 10 kHz	
	🗙 Abbru <u>c</u> h
Diese Einstellungen werden erst nach 'Save (Parameter)' und 'Reset' des Servos wirksam!	
Save & Reset	
l	

Die Einstellungen können nur bei ausgeschalteter Endstufe verändert werden. Außerdem muss der Parametersatz gesichert und ein Geräte-Reset ausgeführt werden, damit die Einstellung übernommen wird.

4.3.4 Stromregler

Ī

Die Stromreglereinstellung ist unter **Parameter/<u>R</u>eglerparameter/<u>S</u>tromregler** über folgendes Menü möglich:

Verstärkung:	1,00	1,00
Zeitkonstante:	2,00 ms	2,00 ms

Die korrekte Einstellung des Stromreglers ist eine wesentliche Voraussetzung, um später den Drehzahlregler auf den verwendeten Motor abstimmen zu können. Die einzustellenden Parameter sind der Verstärkungsfaktor und die Zeitkonstante.

Geben Sie die Parameter korrekt ein. Wenn Sie unsicher sind, behalten Sie die unkritischen Werte.

Vorsicht!

Fehlerhafte Daten für Stromreglerverstärkung und Zeitkonstante können zu Schwingungen und durch kurzzeitige Überströme auch zur Zerstörung des Motors führen!

Beim Servopositionierregler kann die Überstromerkennung ansprechen !

|--|

GEFAHR!

Der Stromregler darf erst dann optimiert werden, wenn die Maximal- und Nennströme des Motors korrekt eingestellt wurden. Bei zu hohen Strömen wird der Motor zerstört, da die Permanentmagnete im Motor entmagnetisiert werden. Die vom Hersteller angegebenen Stromgrenzwerte dürfen deshalb nicht überschritten werden. (Siehe *Kapitel 4.3.2 Motordaten*).

Mit Hilfe der Oszilloskop Funktion (Siehe *Kapitel 11.5 Verwendung der Oszilloskop Funktion*) kann der Stromregler optimiert werden. Sie können sich die Sprungantwort des Stromregler anzeigen lassen, indem Sie die Kanäle des Oszilloskop auf den Wirkstrom Istwert und den Wirkstrom Sollwert einstellen.

Aktivieren Sie die **Drehmomentenregelung** im Menü **Kommandos** und geben einen Stromsollwert vor. Versuchen Sie nun die optimale Sprungantwort einzustellen, indem Sie die Parameter variieren. Im nachfolgenden Plot ist eine gute Sprungantwort dargestellt.

Der Strom sollte innerhalb 1 ms den Sollwert erreichen und höchstens 20% überschwingen. Bei Motoren mit einer großen Statorinduktivität kann es länger dauern, bis der Strom den Sollwert erreicht. Auf jeden Fall soll der Einschwingvorgang ohne großen Überschwinger und gut gedämpft abklingen.

Abbildung 1: Sprungantwort Stromregler

4.3.5 Zwischenkreisüberwachung

In besonderen Anwendungsfällen, z.B. beim starken Beschleunigen oder beim Bremsen von Achsen mit hoher Masse, kann es passieren, dass die Zwischenkreisspannung zeitweise zusammenbricht oder zu groß wird. Wird die Zwischenkreisspannung zu groß (Überspannung > 70 V), schaltet der Servopositionierregler DIS-2 ab. Dies ist eine Sicherheitsfunktion und daher <u>nicht</u> parametrierbar.

Zu kleine Zwischenkreisspannungen können einen Fehler auslösen, sofern dies vom Bediener parametriert wird.

Das Menü wird aktiviert durch Parameter/Geräteparameter/Zwischenkreisüberwachung.

Nennzwischenkreisspannung:	48,0 V
Unterspannungserkennung	
Ansprechschwelle:	24,0 V
Anspiechschweite.	
C Febler: Endstufe sofort abscl	halten
C Fehler: Gesteuerte Abschaltu	ina
Warnung: Warnung anzeiger	
 Warnung: Warnung nicht an: 	, Joigon
	zeiyen

Im Feld **Nennzwischenkreisspannung** wird die Spannung angezeigt, für die die Endstufe ausgelegt ist. Dieser Wert lässt sich nicht einstellen.

Im Feld **Unterspannungserkennung** können Sie vorgeben, unter welche Ansprechschwelle die Spannung absinken muss, damit der Regler eine Unterspannung erkennt. Sinnvolle Werte sind je nach Netzteil 50%...70% der Nennzwischenkreisspannung.

ก	
Ш	

Ein Wert für die Unterspannungserkennung < 50% macht keinen Sinn, da das Netzteil die Leistung, die der Regler in diesem Betriebsfall benötigt, nicht liefern kann. Verwenden Sie statt dessen ein stärkeres Netzteil !.

Im Feld **Fehlerbehandlung** können Sie angeben, wie der Servo auf das Erkennen einer Unterspannung reagieren soll. Diese Einstellung können Sie auch im Fehlermanagement vornehmen (siehe *Kapitel 10.4 Fehlermanagement*).

4.3.6 Motortemperaturüberwachung

Wenn Ihr Motor über einen Temperatursensor verfügt, so kann dieser im Menü **Parameter/Geräteparameter/Temperaturüberwachung** eingestellt werden:

Motortemperatur	9
C kein Motortemperat	ursensor
• analoger Motortemp	peratursensor
🔿 digitaler Motortemp	eratursensor
analoger Motortempera	tursensor
Tuo	KTY 91/92.210/220/250 -
1 YP	KTT 01702-21072207230
Temperaturschwelle	100,0 °C
	• •

Im Feld **Motortemperatur** können Sie wählen, ob sie keinen, einen analogen oder einen digitalen Temperatursensor benutzen.

Die Auswahl **digitaler Motortemperaturfühler** ist zutreffend, wenn der verwendete Motor über einen Öffnerkontakt oder einen Temperaturfühler mit PTC-Charakteristik verfügt. Der Fühler wird aus dem Regler mit einem Messstrom gespeist. Der Spannungsabfall am Fühler wird detektiert und führt zum Auslösen des Übertemperaturfehlers.

Bei (abschnittsweise linearen) analogen Temperatursensoren muss die Temperaturschwelle eingestellt werden. Diese können sie bei aktiviertem analogen Temperatursensor im Feld **analoge Motortemperatur** einstellen. Außerdem können Sie einen der folgenden gängigen Temperatursensoren über die Auswahlbox selektieren:

- ✤ KTY 81/82-210/220/250
- KTY 81/82-110/120/150
- KTY 83-110/120/150
- KTY 84-130/150

4.4 Anwendungsparameter einstellen

4.4.1 Einstellung der Grundkonfiguration

Die möglichen Einstellungen hängen zunächst von der gewählten Grundkonfiguration ab, die über das Menü **Parameter/Anwendungsparameter/Grundkonfiguration** eingestellt wird. Hier erscheint zunächst folgendes Menü, mit dem die gängige Antriebskonfiguration ausgewählt werden kann:

Grundkonfiguration	
Anwendung © rotatorisch © translatorisch	
	Anzeigeeinheiten: U U/min U/min/s Einstellungen
✓ <u>O</u> K X Abbru <u>c</u> h	

Im Feld **Anwendung** können Sie einstellen, ob es sich bei Ihrer Anwendung um eine **rotatorische** oder **translatorische** Anwendung handelt.

Wenn Sie Ihre Applikation auf der abtriebsseitigen Einheit einstellen wollen, klicken Sie auf die "…" Schaltfläche im Feld **Getriebe** oder auf die Schaltfläche **Einstellungen**. Sie gelangen dann in das in *Kapitel 4.4.2 Einstellung der Anzeigeeinheiten* beschriebene Menü **Anzeigeeinheiten**.

Applikationsbeispiele:

- Rotatorisch mit Getriebe:
 Öffnen / Schließen einer Schranke.
- Translatorisch mit Vorschubskonstante:
 Positionieren eines Schlittens um Ware zur Weiterverarbeitung zu transportieren.

4.4.2 Einstellung der Anzeigeeinheiten

Über das Menü **Optionen/Anzeigeeinheiten** ist die Einstellung der Anzeigeeinheiten für Lage, Geschwindigkeit und Beschleunigung möglich. Diese Einheiten werden nur für die Anzeige im Parametrierprogramm benutzt. Das Parametrierprogramm kommuniziert mit dem Regler weiterhin über sogenannte Kommunikationsobjekte, die eine festgelegte physikalische Basiseinheit besitzen. Jeder Zugriff über die RS232-Schnittstelle erfolgt in diesen Basiseinheiten.

Der Benutzer erhält die Möglichkeit für folgende physikalische Größen Anzeigeeinheiten zu wählen:

Position / Umdrehungen

ງ

- Geschwindigkeiten
- Beschleunigungen
- Momente (in Nm oder A)

nzeigeeir	nheiten Nachkommastellen Direk	teingabe	
Anzeige	modus	Getriebe	
-	Standardwerte	🗖 mit Getriebe	Abbru <u>c</u> ł
	Benutzerdefiniert		
	Direkteingabe		
		Geschwindigkeit	
Dreł	moment in Nm Eaktor	⊙ U/min	
,		○ U/s	
Anzeige	einheiten	Beschleunigung	
		O U/min/s	
Umdre	ehungen [U]	○ U/s²	
P	otatorisch >> translatorisch		
		Anzeigeeinheiten: U U/min U/min/s	

Die Einstellung der Anzeigeeinheiten erfolgt unabhängig von einer eventuellen Sollwertvorgabe über Feldbus. Die Einstellung der Anzeigeeinheiten beeinflusst also nicht die Factor-Group und die Notation- und Dimension- Indizes in feldbusspezifischen Protokollen, wie z.B. die CANopen Factor-Group !

Tabelle 6: Anzeigemodus

Auswahl	Einheiten
Standardwerte	 Für Linearachsen: Positionen in Wegeinheiten, Geschwindigkeiten in [Wegeinheiten]/s; Beschleunigungen in [Wegeinheiten]/s². Für rotatorische Antriebe: Positionen in Umdrehungen, Grad oder Radiant, verschiedene Geschwindigkeits- und Beschleunigungseinheiten.
Benutzerdefiniert	 Beispiele: Für Linearachsen und nichtmetrische Weg- Geschwindigkeits- und Beschleunigungseinheiten (z.B. Inch, Inch/min). Für rotatorische Antriebe mit speziellen Weg-, Geschwindig- keits- und Beschleunigungseinheiten.
Direkteingabe	Freie Einstellungen der Weg-, Geschwindigkeits- und Beschleuni- gungseinheiten. Nur für erfahrene Benutzer!

Die Registerkarte **Nachkommastellen** erlaubt dem Benutzer die Auflösung der dargestellten Größen an die "physikalischen" Gegebenheiten anzupassen.

Die Registerkarte **Direkteingabe** erlaubt es, den DIS-2 SerovCommander[™] so zu konfigurieren, dass auch andere als die zur Auswahl stehenden Anzeigeeinheiten verwendet werden können.

C	
٦	٦
7	7

Für weitergehende Informationen siehe Kapitel 11.8 Erweiterte Möglichkeiten im Menü Anzeigeinheiten.

Vorsicht! Nur für erfahrene Benutzer!

In der Registerkarte Direkteingabe können Sie die Factor-Group direkt beschreiben, wenn Sie vorher die Auswahl Direkteingabe angewählt haben.

Beim Beenden des Menüs erhalten Sie folgende Frage:

Die Eingabegrenzen passen sich automatisch an die eingestellten physikalischen Einheiten an, zur Sicherheit können Sie diese noch einmal kontrollieren. Klicken Sie hierzu auf die Schaltfläche Ja

Ī

4.5 Eingabegrenzen festlegen

Über Optionen/Eingabegrenzen erscheint folgendes Menü:

Maximal	32,00 A	 	<u>0</u> K
Momentenwert:		×	Abbru <u>c</u> h
Drehzahlwerte		. <u> </u>	
Maximal parametrierbare Geschwindigkeit:	3000,000 U/min		
Maximal parametrierbare Beschleunigung:	1900000 U/min/s		
Achtung! Diese Eingabebegr nur auf die DIS-2 ServoComm Bereits eingegebene Paramel automatisch begrenzt!	enzungen beziehen sich nander Eingabefenster! ter werden nicht		

Geben Sie hier die maximalen Geschwindigkeiten und Beschleunigungen an, die Sie für Ihre Applikation erwarten. Das Programm benutzt diese Eingaben für die Begrenzungen der Eingabeboxen.

Die Eingabegrenzen können nachträglich verändert werden. Sie wirken sich aber **nur** auf die Eingabefelder des Parametrierprogramms aus!

Es findet **keine** physikalische Begrenzung von Geschwindigkeiten und Beschleunigungen im Antrieb statt. Die Begrenzung der Größen im Antrieb erfolgt über das nachfolgend in *Kapitel 4.6 Sicherheitsparameter wählen* beschriebene Menü **Sicherheitsparameter**!

4.6 Sicherheitsparameter wählen

Um die Mechanik vor Überlastung zu schützen, ist es in vielen Applikationen erforderlich die Beschleunigungen und Geschwindigkeiten, sowie den Verfahrbereich auf "ungefährliche" Werte zu begrenzen. Diese Grenzen der Sollwerte erfolgt über das Menü <u>Paramater/Sicherheitsparameter</u>.

Sicherheitsparameter	
Bremsbeschleunigungen	Momentenbegrenzung
Schnellhalt 10000 U/min/s	Einstellungen
Endschalter 10000 U/min/s	Drehzahlbegrenzung Drehzahlgrenze 3000,000 U/min
DIN1: #STOP-Eingang (low aktiv)	Absoluter Positionierbereich
Max. Abschaltverzögerung:	32768,000 U 32768,000 U Einstellungen
<u>OK</u> <u>Abbruch</u>	

Es können folgende Sicherheitsparameter in diesem Fenster konfiguriert werden:

- Bremsbeschleunigungen:
 - Bremsbeschleunigung Schnellhalt:
 Diese Bremsbeschleunigung wird bei Wegnahme der Reglerfreigabe oder im Fehlerfall (wenn Möglich) verwendet.
 - Bremsbeschleunigung Endschalter:
 Diese Bremsbeschleunigung wird verwendet, wenn der Antrieb auf einen Endschalter gefahren ist.
 - Bremsbeschleunigung #Stop Eingang:
 Diese Bremsbeschleunigung wird verwendet, wenn im Tipp & Teach Betrieb der digitale
 Eingang DIN1 auf Low geschaltet wird.
- Maximale Abschaltverzögerung:

Konnte der Antrieb nach Wegnahme der Reglerfreigabe nicht gesteuert zum Stillstand gebracht werden (z.B. aufgrund einer Fehlparametrierung), so wird nach dieser Zeit die Endstufe abgeschaltet, der Motor trudelt aus, wenn er noch nicht auf Null gebremst wurde.

- Drehzahlbegrenzung:
 Der Drehzahlsollwert wird auf den hier eingestellten Wert begrenzt.
- Momentenbegrenzung:
 Über die Schaltfläche Einstellung gelangen Sie in das Fenster Einstellung der Motordaten (siehe Kapitel 4.3.2 Motordaten). Dort können Sie eine Momentenbegrenzung in Ampere über die Einstellung des Grenzwertes Maximalstrom in A, Effektivwert einstellen.
- Absoluter Positionierbereich:

ת

Über die Schaltfläche **Einstellung** für den gelangen Sie in das Fenster **Einstellung Positionssätze / Wegprogramm** (siehe *Kapitel 6.4 Globale Positioniereinstellungen*). Dort können sie einen maximalen Positionierbereich festlegen (SW-Endschalterfunktionalität).

Je nach Einstellung der Regelkreise für Strom, Drehzahl und Position kann es durch "Überschwinger" in der Regelung zu kurzzeitigen Überschreitungen der eingestellten Parameter kommen. Dies ist bei der Anlageninbetriebnahme zu berücksichtigen, ggf. müssen die Regler im realen Betrieb optimiert werden.

4.7 Einstellung der Reglerfreigabelogik

Um die Endstufe mit Regelung im Servopositionierregler DIS-2 freischalten zu können, ist die Reglerfreigabelogik einzustellen. Die Reglerfreigabelogik entscheidet darüber, welche Bedingungen erfüllt sein müssen, um den Regler freizugeben und den Motor zu bestromen.

Unter **Parameter/Geräteparameter/Reglerfreigabelogik** finden Sie das Menü für die Einstellung der Reglerfreigabelogik.

Dieses Menü ist auch über das **Kommandos** Fenster wählbar, klicken Sie hierzu auf die "…"-Schaltfläche im Feld **Reglerfreigabe**.

Reglerfreigabelogik	
Reglerfreigabe erfolgt	✓ <u>о</u> к
nur durch digitalen Eingang (DIn9)	
nur durch digitalen Eingang (DIn9)	ADDru <u>c</u> n
durch DIn9 und serielle Schnittstelle (RS 232)	
durch Din9 und CAN-Bus	

Über eine sogenannte Combo Box können Sie dabei die folgenden Optionen wählen:

- Nur durch digitalen Eingang (DIN9):
 Die Freigabe erfolgt nur durch den digitalen Eingang DIN9
- Durch DIN9 und serielle Schnittstelle:
 Für eine Freigabe muss DIN9 gesetzt sein, und es muss ein entsprechendes serielles Kommando erfolgen. Dies kann z.B. durch das Setzen des Hakens im Feld Reglerfreigabe im Kommandos Fenster geschehen.
- Durch DIN9 und CAN-Bus:
 Für eine Freigabe muss DIN9 gesetzt sein, und es muss ein Freigabekommando über den CAN-Bus erfolgen.

4.8 Einstellung der Endschalter

Der Servopositionierregler unterstützt sowohl Endschalter mit Öffner- als auch mit Schließkontakten.

Stellen Sie Ihren Antrieb so ein, dass kein Endschalter aktiv ist, wenn sich der Antrieb im erlaubten Positionierbereich befindet. Im unten gezeigten Menü darf dann keine Leuchtdiode aktiv sein. Dies können Sie durch Anklicken von **Öffner** (DIN7, DIN8 = $+24 \text{ V} \rightarrow \text{Sollwert freigeschaltet}$) bzw. **Schließer** (DIN7, DIN8 = $+24 \text{ V} \rightarrow \text{Sollwert gespert}$) einstellen.

Endschalter
Endschaltertyp
Offner
○ Schließer
Optionen
Endschalter sperrt Richtung permanent
End- schalter 0 🍊 👫 El 🎸 Schalter 1
OK Abbruch

Die kleine Grafik in der Mitte zeigt mit einem roten Pfeil an, wenn der Antrieb in Richtung auf einen der Endschalter bewegt wird. Sie erkennen so direkt die Zuordnung der Endschalter zur Verfahrrichtung und können die Verdrahtung der Endschalter ggf. noch anpassen.

Solange ein Endschalter aktiv ist, wird der Sollwert in der jeweiligen Drehrichtung gesperrt. In Applikationen, in denen ein Überfahren der Endschalter oder prellende Endschalter möglich sind, bietet sich die Option "**Endschalter sperrt Richtung permanent**" an. Bei aktivierter Option bleibt die Drehrichtung, in die ein Endschalter ausgelöst wurde, auch nach dem Verlassen des Endschalters gesperrt. In diesem Fall kann der Endschalter zwar freigefahren werden, es ist aber nicht möglich, erneut in die Richtung des Endschalters zu fahren. Die gesperrte Drehrichtung wird dann erst mit Wegnahme der Reglerfreigabe wieder freigegeben.

4.9 Einstellung der Drehrichtung

Im unteren Bereich des **Kommandos** Fenster kann die Option "**Drehrichtungsumkehr**" aktiviert werden. Damit ist es möglich, einer Bewegungsrichtung den entsprechenden Winkelzählsinn, bzw. das gewünschte Vorzeichen von Drehzahl und Strom / Drehmoment zuzuordnen.

GEFAHR!

Wird diese Option aktiviert, dreht der Antrieb bei gleichen Einstellungen in die entgegengesetzte Richtung!

4.10 Betriebsbereitschaft herstellen, Freigabe der Endstufe

Ziel dieses Kapitels ist es, den Motor mit einer konstanten Geschwindigkeit drehen zu lassen. Danach können die weiteren Regelfunktionen, wie z.B. der Drehzahl- und der Lageregler optimiert werden. Die Sollwertvorgabe erfolgt über die analogen Eingänge.

Die Freigabe soll über den digitalen Eingang "Reglerfreigabe" erfolgen.

GEFAHR!

Dieses Kapitel darf erst dann bearbeitet werden, wenn die übrigen Teile des *Kapitels 4* vollständig bearbeitet wurde, insbesondere die Einstellung der Stromgrenzwerte, des Stromreglers und der Sicherheitsparameter.

Falsche Grundeinstellungen können zur Zerstörung des Servopositionierreglers / Motors und des mechanischen Antriebs führen !

Es hat sich in vielen Fällen bewährt, die Stromgrenzwerte, insbesondere den Maximalstrom des Reglers auf "kleine" Werte - z.B. auf den halben Nennstrom - einzustellen, da dann eine starke Belastung aller Komponenten inkl. Mechanik im Fall einer fehlerhaften Einstellung anderer Antriebsparameter vermieden wird. Um den Motor drehzahlgeregelt drehen zu lassen, müssen sie noch folgende Punkte einstellen:

- 1) Aktivieren Sie die Drehzahlregelung (siehe Kapitel 5.2 Drehzahlgeregelter Betrieb).
- 2) Stellen Sie die Reglerfreigabelogik auf "nur durch digitalen Eingang (DIN9)" (siehe Kapitel 4.7 Einstellung der Reglerfreigabelogik).
- 3) Aktivieren sie die Drehzahlregelung über den analogen Eingang 0 (siehe Kapitel 5.4 Sollwertvorgabe über Sollwertselektoren) und parametrieren Sie den gewünschten analogen Drehzahlbereich (Kapitel 8.6 Analogeingänge AINO und AIN1).
 Sollte es Ihnen nicht möglich sein den analogen Eingang zu nutzen, so können Sie die Sollwerte auch über die serielle Schnittstelle vorgeben (siehe Kapitel 5.4 Sollwertvorgabe über Sollwertselektoren).
- Bevor Sie die Reglerfreigabe testen, sollten Sie die Parameter im Antrieb sichern. Dies geschieht mit einem Mausklick auf die hier abgebildete Schaltfläche. Sie finden die Schaltflächen der oberen Menüleiste des Hauptfensters.

5) Schalten Sie jetzt kurzfristig die Reglerfreigabe ein.

Die Welle muss nach Freigabe der Regelung beginnen zu drehen. Wenn der Motor nicht dieses Verhalten zeigt, so liegt entweder ein Fehler vor, oder der Servopositionierregler DIS-2 ist falsch parametriert. In der nachfolgenden Tabelle finden Sie typische Fehler und wie Sie diese beheben können:

Fehler	Abhilfe
Der Motor entwickelt ein Halte- moment, er "rastet" in verschiede-	Die Polpaarzahl und/oder die Phasenfolge ist falsch, stellen Sie die Pol- paarzahl richtig ein und/oder tauschen Sie die Motorphasen. Führen Sie nochmals die automatische Identifikation durch (ciebe Kapitel 4.3.2
nen Lagen em.	Motordaten)
Die Motorwelle schwingt oder läuft unruhig.	Der Winkelgeberoffset und/oder die Reglerparameter (siehe <i>Kapitel 5.2 Drehzahlgeregelter Betrieb</i>) sind falsch eingestellt. Führen Sie nochmals die automatische Identifikation durch. (siehe <i>Kapitel 4.3.1 Winkelgeber</i>)
Die Welle dreht nicht.	Keine Zwischenkreisspannung. Die Endschalter sind aktiv.
Die Welle dreht nicht. Im Istwertfenster wird der Drehzahl- sollwert immer noch mit "0" ange- zeigt.	Der Drehzahlsollwert ist nicht korrekt konfiguriert. Lesen Sie Kapitel 5.4 Sollwertvorgabe über Sollwertselektoren für weitere Informationen.

Tabelle 7: Fehlerbehebung: Drehzahlregelung

Beachten Sie beim Anschluss der Motorphasen, dass die Hersteller von Servomotoren die Phasenfolge unterschiedlich festlegen. Gegebenenfalls müssen die Phasen U und W getauscht werden.

5 Strom- und Drehzahlregelung

5.1 Funktionsübersicht

Die Strom- und Drehzahlregelung ist als eine kaskadenförmige Regelstruktur mit einem inneren Stromregelkreis und einem überlagerten Drehzahlregelkreis aufgebaut. Diese Regler sind als PI-Regler ausgeführt. Über die Sollwertselektoren können Sollwerte aus unterschiedlichen Quellen auf die entsprechenden Regler geschaltet werden (siehe Kaptitel *5.4 Sollwertvorgabe über Sollwertselektoren*).

Der prinzipielle Aufbau ist im Blockschaltbild auf der nächsten Seite verdeutlicht.

Bei der rotororientierten Regelung werden zwei Phasenströme und die Rotorlage gemessen. Diese Ströme werden zunächst mit der Clark-Transformation in einen imaginären und einen reellen Teil überführt und anschließend mit der Park-Transformation in die Rotorkoordinaten transformiert. So können die Rotorströme mit PI-Reglern zu entsprechenden Rotorspannungen geregelt und wiederum in das Statorsystem rücktransformiert werden. Die Treibersignalgenerierung arbeitet mit symmetrischer Pulsweitenmodulation für die Leistungsstufe in Sinuskommutierung mit der 3. Harmonischen Oberwelle.

Ein Integrator überwacht das Strom²-Zeit-Integral des Reglers. Wird ein Maximalwert (Maximalstrom für 1s) überschritten, so kommt es zu einer Warnmeldung, und der Strom wird auf den Nennstrom begrenzt.

Die wesentlichen Vorteile der Rotororientierten Stromregelung wurden bereits im *Kapitel 1.2.3 Leistungsmerkmale des DIS-2* unter den Leistungsmerkmalen zusammengefasst.

Im drehmomentengeregelten Betrieb wird ein Stromsollwert **i_soll** für den Wirkstromregler vorgegeben. In diesem Betriebsfall ist nur der Stromregler im Servopositionierregler aktiv. Da das auf der Motorwelle erzeugte Drehmoment annähernd proportional zum Wirkstrom im Motor ist, ist es berechtigt, vom drehmomentgeregelten Betrieb zu sprechen.

> Die Güte der Drehmomentregelung wird im wesentlichen vom Motor und der Sensorik für die Rotorlageerfassung bestimmt.

Mit einer guten Synchronmaschine, einem hochauflösenden Drehgeber (SINCOS-Geber) und einer guten Reglereinstellung ist mit dem DIS-2 eine Drehmomentwelligkeit im Bereich von 1% bis 3% bezogen auf den Maximalstrom resp. das zugehörige Maximalmoment des Motors erreichbar.

Im drehzahlgeregelten Betrieb wird eine bestimmte Solldrehzahl vorgegeben. Der Servopositionierregler DIS-2 ermittelt über die Geberauswertung die aktuelle Istdrehzahl **n_ist**. Zur Einhaltung der Solldrehzahl wird der Stromsollwert **i_soll** bestimmt.

5.2 Drehzahlgeregelter Betrieb

Um den drehzahlgeregelten Betrieb einzustellen, muss das Kommandofenster folgendermaßen konfiguriert werden:

Zur Sollwertkonfiguration in dieser Betriebsart siehe das Kapitel 5.4 Sollwertvorgabe über Sollwertselektoren.

5.2.1 Optimierung des Drehzahlreglers

Um den Drehzahlregler auf Ihre Anwendung zu Optimieren können Sie unter

<u>Parameter/Reglerparameter/Drehzahlregler</u> das Menü für die Einstellungen der Reglerparameter öffnen:

ehzahlregler		
Verstärkung:	0,70	0,70
Zeitkonstante:	8,00 ms	8,00 ms
Drehzahlistwertfilter:	1,6 ms	1,6 ms

In diesem Menü können Sie die Verstärkung sowie die Zeitkonstante für den PI Regler einstellen.

Zur Verbesserung des Regelverhaltens wird der gemessene Drehzahlistwert geglättet. Das wird mit einem **Drehzahlistwertfilter** erreicht. Die wirksame Filterzeitkonstante kann dabei parametriert werden:

]	Bei einer zu großen Zeitkonstante des Drehzahlistwertfilters erhält man eine schlechtere Dynamik, da Störgrößen erst verzögert erfasst werden können. In ungünstigen Fällen kann eine zu groß gewählte Zeitkonstante die Stabilität des Drehzahlregelkreises ver- schlechtern. Die zusätzliche Laufzeit kann zu Schwingungen führen. Bei einer zu kleinen Zeitkonstante tritt bei hohen Verstärkungsfaktoren im Drehzahlreg- ler akustisch vernehmliches Stromrauschen und eine leichte Unruhe an der Welle auf. Der Motor wird dadurch auch stärker erwärmt. Wählen Sie aus Stabilitätsgründen die Zeitkonstante stets möglichst klein. Die Grenze nach unten ist das Rauschen gegeben. Typische praktische Werte für den Drehzahlistwertfilter sind 0,6 ms bis 2,0 ms.
--	---	---

Der Drehzahlregler muss so eingestellt werden, dass nur ein Überschwinger des Drehzahl-Istwertes auftritt. Der Überschwinger soll ca. 15% über der Solldrehzahl liegen. Die fallende Flanke des Überschwingers soll den Drehzahl-Sollwert jedoch nicht oder nur wenig unterschreiten, um dann den Drehzahlsollwert zu erreichen. Diese Einstellung gilt für die meisten Motoren, die mit dem Servopositionierregler betrieben werden können. Wenn ein noch härteres Regelverhalten gefordert ist, kann die Verstärkung des Drehzahlreglers weiter erhöht werden. Die Verstärkungsgrenze ist dadurch gegeben, dass der Antrieb bei hohen Drehzahlen oder bei Anregung der Welle zum Schwingen neigt. Die erzielbare Verstärkung im Drehzahlregelkreis ist von den Lastverhältnissen an der Motorwelle abhängig. Sie müssen deshalb die Drehzahlreglereinstellung bei eingebautem Antrieb nochmals kontrollieren.

Wenn Sie den Drehzahlregler bei leerlaufender Motorwelle parametrieren, müssen Sie nach dem Einbau des Antriebes nur noch die Drehzahlreglerverstärkung heraufsetzen.

5.2.2 Strategien zur Optimierung

Das Verhalten des Drehzahlreglers kann man am besten beobachten, indem man die Reaktion auf einen Drehzahlsprung aufzeichnet. Stellen Sie daher die Betriebsart "Drehzahlregelung" ein und schalten Sie im Sollwertselektor Menü eine eventuell vorhandene Rampenfunktionalität aus. Einen Drehzahlsprung erreicht man beispielsweise dadurch, indem man über die RS232 Schnittstelle Sollwertsprünge vorgibt. Oder man nutzt die Sollwertvorgabe über einen Analogeingang, den man geeignet kurzschließt, um einen Sprung zu erreichen.

Mit Hilfe der Oszilloskop Funktion (Siehe *Kapitel 11.5 Verwendung der Oszilloskop Funktion*) kann die Reaktion des Drehzahlreglers beobachtet werden. Sie können sich die Sprungantwort des Drehzahlegler anzeigen lassen, indem Sie die Kanäle des Oszilloskops auf den Drehzahl Istwert (roh) und den Drehzahl Sollwert einstellen.

Generell gilt, dass Sie die Zahlenwerte für den Verstärkungsfaktor und die Zeitkonstante nicht in großen Sprüngen verändern dürfen, sondern immer nur in kleinen Abständen.

Zunächst sollten Sie mit einer relativ großen Integrierzeit im Bereich 8 ms bis 10 ms beginnen und die Verstärkung schrittweise erhöhen. Erst nachdem Sie sich über die Erhöhung der Verstärkung an die richtige Einstellung "herangetastet" haben, sollten Sie die Integrierzeit schrittweise reduzieren.

Nach der Veränderung der Zahlenwerte können zwei Fälle auftreten:

- Bei zu harter Einstellung wird der Drehzahlregler instabil.
- Bei zu weicher Einstellung wird der Antrieb nicht steif genug, Schleppfehler sind im späteren Betrieb die Folge.

ĺ

Die Drehzahlreglerparameter sind nicht unabhängig voneinander. Eine von Versuch zu Versuch anders aussehende Messkurve kann also mehrere Ursachen haben. Ändern Sie deshalb jeweils nur einen Parameter: entweder nur den Verstärkungsfaktor oder nur

die Zeitkonstante.

Zum Abgleichen des Drehzahlreglers erhöhen Sie die Verstärkung bis es zum Schwingen kommt, dann nehmen Sie die Verstärkung in kleinen Schritten wieder zurück bis das Schwingverhalten verschwindet. Anschließend verkleinern Sie die Zeitkonstante bis ein Schwingverhalten eintritt, dann erhöhen Sie die Zeitkonstante in kleinen Schritten bis der Regler bei Sollwert = 0 stabil und steif genug ist.

Fall 1: Zu weich eingestellter Drehzahlregler

Abbildung 3: Drehzahlregler – zu weich

Abhilfe: Erhöhen Sie den Verstärkungsfaktor um 2 bis 3 Zehntelpunkte / Verringern Sie danach die Zeitkonstante um 1 bis 2 ms

Fall 2: Zu hart eingestellter Drehzahlregler

Abbildung 4: Drehzahlregler zu hart

Abhilfe: Verkleinern Sie den Verstärkungsfaktor um 2 bis 3 Zehntelpunkte / Erhöhen Sie die Zeitkonstante um 1 bis 2 ms

Fall 3: Richtig eingestellter Drehzahlregler

_		 	
	Ch i		
	and the second sec	 	-
_			
	1		
	/		
Concession of the local division of the loca			
			P
_			

Abbildung 5: Drehzahlregler – richtig eingestellt

5.3 Drehmomentengeregelter Betrieb

Um den drehmomentengeregelten Betrieb einzustellen, muss das Kommandofenster entsprechend konfiguriert werden.

Kommandos	
☐ Reglerfreigabe	
• Drehmomentenregelung	
C Drehzahlregelung	
C Positionierung	

Der Momentensollwert kann in A oder Nm vorgegeben werden. Dies kann mit dem Menüpunkt Optionen/Anzeigeeinheiten eingestellt werden. Die betreffenden Menüs stellen sich dann automatisch auf die gewählte Einheit um.

Falls das Drehmoment in Nm vorgegeben werden soll, muss die **Drehmomentkonstante**, also der Umrechnungsfaktor zwischen Strom und Drehmoment bekannt gemacht werden. Die Drehmomentkonstante wird im Menü **Parameter/Geräteparameter/Motordaten** eingegeben und kann meistens durch die Angaben des Typenschildes auf dem Motor berechnet werden: hierzu ist das Nennmoment durch den Nennstrom zu teilen.

Eine Drehmomentkonstante von **0 Nm/A** ist unzulässig, wenn "Drehmomente in Nm" aktiviert wurde.

5.4 Sollwertvorgabe über Sollwertselektoren

Der Servopositionierregler DIS-2 gibt Ihnen die Möglichkeit in den Betriebsarten Drehmoment- und Drehzahlregelung den Sollwert über ein Sollwertmanagement vorzugeben. Das entsprechende Menü erhalten Sie über <u>Betriebsmodus/Sollwert-Selektion.</u>

Als Sollwertquellen können selektiert werden:

- 2 Analogeingänge:
 - > AIN 0 und AIN 1 (Parametrierung siehe Kaptitel 8.6 Analogeingänge AIN0 und AIN1)
- Festwert RS232
- Festwert CAN
- Lageregler (im Betriebsmodus Drehzahlregelung)
- Drehzahlregler (im Betriebsmodus Drehmomentregelung)

Ist keine Sollwertquelle aktiviert (inaktiv), so ist der Sollwert Null.

Das Sollwertmanagement verwaltet Ihre Einstellungen getrennt für jede Betriebsart. Das bedeutet, dass beim Wechsel der Betriebsart die Sollwertselektoren automatisch auf die zuletzt von Ihnen in dieser Betriebsart eingestellten Werte umgestellt werden.

5.4.1 Drehzahlgeregelter Betrieb

Im Sollwertmanagement steht ein Rampengenerator zur Verfügung. Über **Selektor: Drehzahlsoll**wert kann eine der o.a. Sollwertquellen ausgewählt und über den Rampengenerator geführt werden. Zusätzlich kann eine weitere Quelle als Sollwert ausgewählt werden, **Selektor: Hilfssollwert**, die aber nicht über den Rampengenerator geführt werden. Der Gesamtsollwert ergibt sich dann durch Summation der beiden Werte. Die Rampe ist richtungsabhängig in Beschleunigungs- und Bremszeit parametrierbar.

Sollwert-Selektoren		
Momentenregelung Drehzahlregelung		_
Selektor: Drehzahlsollwert	Sollwertrampe	✓ <u>0</u> K ★ Abbru <u>c</u> h
Selektor: Hilfssollwert	Drehzahlsollwert 0,000 U/min	
Selektor: Momentenbegrenzung	Momentenbegrenzung 0,000 A	

In dem o.a. Menü für die Drehzahl-Sollwertselektion kann außerdem die Drehmomentbegrenzung aktiviert werden. Diese ist symmetrisch mit freier Auswahl der Begrenzungsquelle möglich.

5.4.2 Drehmomentgeregelter Betrieb

Wenn Sie die Registerkarte **Momentenregelung** aktivieren können Sei über **Selektor: Momentensollwert** eine der o.a. Sollwertquellen ausgewählt werden. Allerdings entfällt im drehmomentengeregelten Betrieb der Rampengenerator und der Hilfssollwert.

Auch hier kann die Drehmomentbegrenzung aktiviert werden.

Sollwert-Selektoren Momentenregelung Drehzahlregelung	
Selektor: Momentensollwert	Momentensollwert 0,276 A
Selektor: Momentenbegrenzung	Momentenbegrenzung
R5232	0,495 A

Ist als Sollwertquelle ein Analogeingang aktiviert, aber keine Linie zum Sollwert abgebildet, so sind ggf. die digitalen Eingänge aktiviert. (siehe Kapitel 8.1.1 Einstellung der digitalen Eingänge)

5.4.3 Sollwertvorgabe über RS232

Haben Sie eine der Sollwertquellen auf Sollwert über RS232 gestellt, so können Sie diesen im Menü <u>Betriebsmodus/Sollwertvorgabe RS232</u> einstellen. Sie erreichen das Menü ebenfalls, wenn Sie auf die "…"-Schaltfläche neben dem Sollwertselektor klicken.

Es erscheint folgendes Fenster:

ain		🖌 <u>о</u> к
Drehzahlsollwert		
*	100,000 U/min	X Abbru <u>c</u> h
Sofort übertragen	C Transfer	
Hilfssollwert		
	0,000 U/min	
☑ Sofort übertragen	C Transfer	
Momentensollwert		
	0,000 A	
✓ Sofort übertragen	C Transfer	
Momentenbegrenzung		
	0,000 A	
		STOP
Sofort übertragen	C Transfor	

Die zuvor aktivierten RS 232 Quellen werden durch einen grünen Pfeil kenntlich gemacht. Hier können Sie Soll- oder Begrenzungswerte numerisch eingeben. Um Fehleingaben schnell abfangen zu können, klicken Sie auf das rote **STOP**-Symbol. Der Sollwert wird sofort auf den Wert **0** gesetzt und sofort übertragen.

Wenn die Sollwerte nicht sofort übertragen werden sollen, entfernen Sie den Haken bei **Sofort übertragen.** Neue Sollwerte werden dann nur noch gesendet, wenn Sie auf die Schaltfläche **Transfer** klicken.

5.4.4 Sollwertrampe

Der Servopositionierregler DIS-2 kann Drehzahlsollwertsprünge auf unterschiedliche Weise verarbeiten. Er kann den Sprung ungefiltert zum Drehzahlregler weitergeben, oder er kann eine Funktion berechnen, die die unterschiedlichen Sollwerte des **Selektors Drehzahlsollwert** mit einer Rampe einstellbarer Steigung verschleift.

aktiviert bzw. deaktiviert.

Der Rampengenerator wird durch die Schaltfläche

Es erscheint das auf der folgenden Seite abgebildete Fenster:

ຼງ

Ĩ

mpen		
)rehzahl		
Verknüpfungen		🗸 ок
□ r3 = r1		X Abbruch
□ r4 = r2	13 14	
Positive Bewegungsrichtu r1: 0 -> (+n_soll)	125000 U/min/s	
r2: (+n_soll) -> 0	125000 U/min/s	
Negative Bewegungsricht	ung	
	125000 U/min/s	
r3: U -> (-n_soll)		

Die Rampen lassen sich für Rechtslauf und für Linkslauf separat einstellen, ferner für steigende und fallende Drehzahlen.

Wenn die Rampenbeschleunigungen teilweise gleich sind, kann die Eingabearbeit dadurch abgekürzt werden, indem man die Kontrollkästchen [r3 = r1], [r4 = r2] oder [r2 = r3 = r4 = r1] nutzt.

Der Rampengenerator sollte immer verwendet werden, wenn der Regler im Drehzahlgeregelten Betrieb arbeitet und keine Lageregelung – auch nicht in einer externen Steuerung – vorhanden ist. Die Rampen sollten so eingestellt werden, dass der Antrieb beim Beschleunigen unter realistischen Lastbedingungen nicht in die Strombegrenzung gesteuert wird.

Bei korrekter Auslegung der Sollwertrampe lässt sich das Überschwingen des Drehzahlreglers beim einlaufen in die Solldrehzahl erheblich reduzieren gegenüber dem Betrieb ohne Sollwertrampe.

In Applikationen mit Lageregelung (intern oder über die externe Steuerung) darf die Sollwertrampe nicht aktiviert werden, da sie regeltechnisch wie ein PT₁-Filter wirkt und die Stabilität im Regelkreis verschlechtert.

5.4.5 Drehmomentbegrenzung

Wie bereits erwähnt, kann in der Betriebsart Drehzahlregelung eine Drehmomentbegrenzung parametriert werden. Die eingestellte Sollwertquelle gibt dann einen Maximalmoment vor, das den Sollwert für den Strom- bzw. Drehmomentregler symmetrisch begrenzt.

Bitte beachten Sie, dass der Stromsollwert zusätzlich auch über die im Motordaten Menü eingestellten Werte für den Nennstrom und den Maximalstrom begrenzt wird. Der Stromsollwert wird somit jeweils auf den kleineren Momentengrenzwert begrenzt.

Applikationen, die eine Drehmomentregelung in einem Quadranten erfordern, also die Einstellung des Drehmoments von Null bis Maximum in einer Drehrichtung, können in den meisten Fällen vorteilhaft in der Betriebsart Drehzahlregelung mit Drehmomentbegrenzung realisiert werden:

- Die Vorgabe des Drehmomentsollwertes erfolgt über die Drehmomentbegrenzung
- Der Drehzahlsollwert wird über einen separaten Sollwert vorgegeben, so wird ein "Durchdrehen" des Antriebs bei fehlender Last verhindert, die Drehzahl wird auf ungefährliche Werte begrenzt.

6 Positionierbetrieb

5	
JЦ	
-	

Dieses Kapitel können Sie überspringen, wenn Ihr Antrieb nur im Drehzahl- oder Drehmomentenbetrieb arbeitet.

6.1 Funktionsübersicht

In der Betriebsart Positionierung ist der Drehzahlregelung eine Positioniersteuerung überlagert. Im Positionierbetrieb wird eine bestimmte Position vorgegeben, die vom Motor selbsttätig, also ohne eingriff einer externen Steuerung, angefahren werden soll. In dieser Betriebsart wird die Reglerkaskade im DIS-2 erweitert, wie in Abbildung 6 dargestellt:

- Der Lageregler ist als Proportionalregler (kurz P-Regler) ausgeführt. Die aktuelle Lage wird aus den Informationen der internen Geberauswertung gewonnen. Die Lageabweichung wird im Lageregler verarbeitet und als Drehzahlsollwert an den Drehzahlregler weitergereicht.
- Der Trajektoriengenerator berechnet das Verfahrprofil, das benötigt wird, um ausgehend von der aktuellen Position und von der aktuellen Geschwindigkeit den Zielpunkt anzufahren. Er liefert die Soll-Lage für den Lageregler und eine Vorsteuerdrehzahl für den Drehzahlregler zur Verbessung der Regeldynamik bei schnellen Positionsvorgängen.
- Die Positioniersteuerung stellt zahlreiche Meldungen zur Verfügung, die für die externe Steuerung benötigt werden, z.B. eine Ziel-Erreicht-Meldung und eine Schleppfehlermeldung.

Abbildung 6: Blockschaltbild Positioniersteuerung

ົງໃ

Im Gegensatz zu vielen Wettbewerbsprodukten wird im DIS-2 der vollständige
Verfahrvorgang in jedem Regeltakt neu berechnet. Positioniervorgänge können bei diesem Konzept jederzeit auch beim Verfahren geändert oder abgebrochen werden.
Ermöglicht wird dieses Konzept durch die hohe Leistungsfähigkeit des im DIS-2 verwendeten Motion-Control-DSPs für die Regelung.

Die leistungsfähige Positioniersteuerung im DIS-2 verfügt über eine Vielzahl an Parametern und Positionssätzen. Bis zu 64 Positionssätze können im DIS-2 nichtflüchtig gespeichert und über den Trajektoriengenerator abgefahren werden.

Jeder der 64 Positionssätze beinhaltet eine separate Zielposition. Die weiteren Parameter der 64 Positionssätze sind gleichmäßig in 4 Gruppen unterteilt. Für jede der 4 Positionsgruppen können folgende Parameter eingestellt werden:

- Beschleunigungen
- Fahrgeschwindigkeit
- Auswahl der Beschleunigungsart: Ruckbegrenztes Geschwindigkeitsprofil oder Zeitoptimal (konstante Beschleunigung)
- Relativ- oder Absolutpositionierung
- Laufende Positionierung abwarten oder verwerfen
- Anfahrverzögerung

Alternativ bietet der DIS-2 die Möglichkeit, sämtliche Parameter eines Positionssatzes individuell für jeden Positionssatz zu speichern. Das bedeutet eine höhere Flexibilität bei den jeweiligen Verfahrprofilen. Die max. Anzahl der verfügbaren Positionssätze wird dadurch auf 16 reduziert.

Die Auswahl der max. zur Verfügung stehenden Positionssätze, 16 bzw. 64, wird über den DIS-2 ServoCommander[™] parametriert (siehe *Kapitel 6.4 Globale Positioniereinstellungen*).

Zusätzlich gibt es Positionsdatensätze für die Positionierung über den CAN-Bus (DSP402) und die Referenzfahrt.

Die Positioniersteuerung unterstützt somit Punkt zu Punkt Bewegungsabläufe mit der Endgeschwindigkeit Null (Stillstand im Zielpunkt). Das Abbrechen eines Positioniervorgangs während der Fahrt und das direkte Anfahren der nächsten gewählten Position wird unterstützt.

Die Auswahl der Gruppen und Positionen erfolgt über die digitalen Eingänge (siehe *Kapitel 6.6 Ziele anfahren*). Wahlweise kann diese Auswahl auch über die RS232-Schnittstelle geschehen.

Für die Referenzfahrt, oder wenn eine Positionierung über CAN (DS402) gewünscht ist, werden die entsprechenden Positionsdatensätze direkt auf den Trajektoriengenerator geschaltet.

6.2 Betriebsart aktivieren

Um den Referenzfahr- bzw. Positionierbetrieb einzustellen, muss das Kommandofenster folgendermaßen konfiguriert werden:

Kommandos
E Reglerfreigabe
C Drehmomentenregelung C Drehzahlregelung
Positionierung
Auswahl: 64 Positionen
© Wegprogramm (DIN3) ☐ Neue I/O-Belegung
 High: Wegprogramm Low: Auswahl: 32 Positionen
C Tipp & Teach (DINO)
 High: Tipp & Teach Low: Auswahl: 32 Positionen

GEFAHR!

Sie sollten erst dann den Positionierbetrieb aktivieren, wenn Sie vorher die Motorparameter sowie den Strom- und Drehzahlregler eingestellt haben.

Falsche Grundeinstellungen können zur Zerstörung des Servopositionierreglers, des Motors und des mechanischen Antriebs führen.

6.3 Lageregler einstellen und optimieren

Im Positionierbetrieb ist zusätzlich zum Betriebsfall mit Drehzahlregelung ein übergeordneter Lageregler aktiv, der Abweichungen von Soll- und Istlage verarbeitet und in entsprechende Sollwertvorgaben für den Drehzahlregler umsetzt. Der Lageregler bildet aus der Differenz zwischen Soll- und Istlage eine Korrekturgeschwindigkeit, die als Sollwert an den Drehzahlregler weitergereicht wird. Der Lageregler wird in Verbindung mit der Positioniersteuerung betrieben. Er ist ein P-Regler mit parametrierbaren Eingangs- und Ausgangsbegrenzungen.

Über den Menüpunkt **Parameter/Reglerparameter/Lageregler** öffnen Sie das Fenster für die Parametrierung des Lagereglers:

Lageregler		
Lageregler		
Verstärkung:	0,20	0,20
max. Korrekturgesch w indigkeit:	± 500,000 U/min	Schleppfehler Meldung
Totbereich Totbereich:	± 0,00020 U	X Abbru <u>c</u> h

Tragen Sie folgende Werte ein:

- Verstärkung:
- * max. Korrekturgeschwindigkeit:

Sie haben die Möglichkeit die Geschwindigkeit einzustellen, die im Falle einer Abweichung zwischen Soll- und Istlage zu der Fahrgeschwindigkeit hinzugerechnet wird. Diese Größe sollte zunächst auf ca. +/-500 U/min eingestellt werden.

Totbereich:

Hier kann eine zulässige Distanz zwischen Soll- und Istwert angegeben werden, innerhalb derer der Lageregler nicht aktiv wird. Durch die Einstellung eines Totbereichs können Grenzschwingungen unterdrückt werden, die bei Gebern mit geringer Auflösung auftreten können, also z.B. in blockkommutierten Antrieben mit Lagerückführung ausschließlich über die im Motor eingebauten Hallsensoren. Der Totbereich sollte möglichst auf Null parametriert werden, um die höchste Lagegenauigkeit zu erzielen.

Schleppfehler:

Parametrierung eines Schleppfehlers, sowie einer Ansprechverzögerung. Wird die Abweichung zwischen Soll- und Istwert größer als der eingestellte Grenzwert, wird eine Meldung oder ein Fehler ausgelöst. Dazu ist die Reaktion im Fehlermanagement entsprechend einzustellen.

6.3.1 Optimierung des Lagereglers

Voraussetzung für den Abgleich des Lagereglers sind korrekt eingestellte Strom- und Drehzahlregler. (Siehe die vorigen Kapitel)

Bitte stellen Sie sicher, dass die Motorwelle frei drehbar ist und der Antrieb keinen Schaden nehmen kann.

Zur Durchführung der Optimierung sind folgende Schritte notwendig:

- 1. Aktivieren Sie den Lageregler und stellen Sie die Verstärkung zunächst auf den Wert 0,5.
- Öffnen Sie das Menü für die Parametrierung der Positionsdatensätze (Siehe Kapitel 6.5 Positionssätze parametrieren) und stellen Sie folgende Werte für die Zielposition der Positionssätze 0 und 1 ein:
 - Zielposition 0: 10 U / Zielposition 1: -10 U
 - Fahrtgeschwindigkeit: (halbe Nenndrehzahl)
 - Beschleunigung: (maximal möglicher Wert)
 - Bremsbeschleunigung: (maximal möglicher Wert)
- 3. Starten Sie das Oszilloskop (siehe Anhang, *Kapitel 11.5 Verwendung der Oszilloskop Funktion*) durch Aktivierung des Menüpunktes <u>Anzeige/O</u>szilloskop und stellen Sie folgende Werte ein:
 - Kanal 1: Geschwindigkeits-Istwert; Skalierung = 1000 U/min / div, -2 div
 - Kanal 2: Rotorlage; Skalierung = 50 ° / div; Offset 1 div
 - Zeitbasis: 100 ms / div; Verzögerung = -200 ms
 - Trigger: Quelle = Geschwindigkeits-Istwert; Level = halbe Fahrtgeschwindigkeit; Modus = normal, fallende Triggerflanke
- 4. Schalten Sie die Endstufenfreigabe ein. Starten Sie die Positionierung abwechselnd mit den Zielen 0 und 1 über das Menü Ziele Anfahren (Siehe *Kapitel 6.6 Ziele anfahren*). Der Motor reversiert dann innerhalb der vorgegebenen Grenzen.

Optimierung: Drehzahl und Rotorlage beim Stoppvorgang bewerten. Wenn der Einschwingvorgang der Position zu lange dauert, muss die Verstärkung erhöht werden. Wenn die Drehzahl beim Stoppvorgang beginnt zu schwingen, muss die Verstärkung verringert werden.

Abbildung 7: Optimierung Lageregler

Beachten Sie dass die Überschwinger durch die fehlenden Beschleunigungs- und Bremszeiten hervorgerufen werden.

6.4 Globale Positioniereinstellungen

Über **Parameter/Positionierung/Einstellungen Positionssätze / Wegprogramm** gelangen Sie in das Menü Einstellungen Positionssätze / Wegprogramm, mit dem Sie den Positionierbereich als globale Einstellung für alle Positionierungen festlegen können.

Einstellungen Positionssätze / Wegprogramm	
Positionierbereich	
Maximum:	32768,000 U
Minimum:	-32768,000 U
Fahrprofile	
64 Positionen / 4 Fal	rprofile
C 16 Positionen / 16 Fa	ahrprofile
Wegprogramm	
🔲 Wegprogramm aktiv	
START1: Wegprogramm Zeile:	
START2: Wegprogramm Zeile:	
Referenzfahrt	
O Ziele	parametrieren
✓ <u>O</u> K X Abbru <u>c</u> h	

Bei absoluten Positionierungen wird jede neue Zielposition auf Einhaltung der Grenzen für den absoluten Positionierbereich überprüft. Die Parameter Minimum und Maximum im Feld **Positionierbereich** geben die absoluten Positionsgrenzen für den Lage-Sollwert und den Lage-Istwert an. Der Positionierraum bezieht sich immer auf die Nullposition des Antriebes.

Über die Schaltfläche **Referenzfahrt** gelangen Sie in das Referenzfahrtmenü (siehe *Kapitel 6.8 Referenzfahrt*)

Über die Schaltfläche **Ziele parametrieren** gelangen Sie in das Menü zum Parametrieren der Zielpositionen (siehe *Kapitel 0 Im unteren* Bereich des Fensters können Sie einige Einstellungen für das Wegprogramm vornehmen. Wenn Sie **Wegprogramm aktiv** anwählen, wird im Positionierbetrieb das Wegprogramm freigeschaltet. Über die Schaltfläche gelangen Sie in das Menü für das Wegprogramm (siehe *Kapitel 7 Wegprogramm*). Außerdem können Sie hier zwei Einsprungzeilen für das Wegprogramm festlegen.

Positionssätze parametrieren).

Mit der Option **16 / 64 Positionssätze** kann gewählt werden, wie viele Zielpositionen Sie benutzen wollen:

 Ist die Option 64 Positionssätze aktiv, können Sie 64 voneinander unabhängige Zielpositionen parametrieren. Alle anderen Fahrprofilparameter (Beschleunigungen, Anfahrverzögerungen, Optionen, ...) sind allerdings nur in Gruppen einstellbar. Es gibt vier Gruppen, welche die Positionsnummern (0..15), (16..31), (32..47) und (48..63) enthalten. • Ist die Option **16 Positionssätze** aktiv, können Sie 16 voneinander unabhängige Zielpositionen parametrieren. Für jede Position können Sie die Fahrprofilparameter (Beschleunigungen, Anfahrverzögerungen, Optionen, ...) individuell einstellen.

Im unteren Bereich des Fensters können Sie einige Einstellungen für das Wegprogramm vornehmen. Wenn Sie **Wegprogramm aktiv** anwählen, wird im Positionierbetrieb das Wegprogramm freigeschaltet. Über die Schaltfläche gelangen Sie in das Menü für das Wegprogramm (siehe *Kapitel 7*

Wegprogramm). Außerdem können Sie hier zwei Einsprungzeilen für das Wegprogramm festlegen.

6.5 Positionssätze parametrieren

Im Servopositionierregler DIS-2 können 16 bzw. 64 Positionssätze parametriert werden. Die Parametrierung dieser Positionssätze wird im Menü **Parameter/Positionierung/Ziele parametrieren** durchgeführt.

Mit der Schaltfläche GO! können Sie eine Positionierung mit dem aktuell angezeigten Zielsatz starten.

Über die Schaltfläche **Positionier-Einstellungen** kann die allgemeine Positioniereinstellung (z.B. Positionsgrenzen) verändert werden (siehe *Kapitel 6.4 Globale Positioniereinstellungen*)

Registerkarte: Einstellungen

7		
Ziele parametrieren		
Ziel	Einstellungen Fahrprofil	
 Position POS 0 POS 1 POS 2 POS 3 POS 4 POS 5 POS 6 POS 7 POS 8 POS 9 POS 10 POS 11 POS 12 POS 13 POS 14 POS 15 POS 15 POS 16 POS 17 POS 18 POS 19 POS 20 Tipp & Teach CAN-Bus 	Positionierung (015) C relativ e relativ, bezogen auf letztes Ziel absolut Meldungen (063) Restweg: 0,000 U	(015) Start bei laufender Positionierung Startbefehl ignorieren Ende abwarten Positionierung unterbrechen Anfahrverzögerung (015)
<u>✓ <u>o</u>k X</u>	Abbruch Positionier-Einstellu	ungen GO!

Im linken Feld **Ziel** kann ausgewählt werden, welcher Positionssatz parametriert werden soll. Bei der Verwendung von 64 Positionssätzen sind diese zu 4 Positionsgruppen zusammengefasst (0..15, 16..31, 32..47, 48..63).

Ist im Menü Einstellungen Positionssätze / Wegprogramm die Option "16 Positionen /16 Fahrprofile" aktiviert, stehen nur 16 Positionssätze zur Verfügung, die aber dafür vollständig unabhängig voneinander parametriert werden können.

Alternativ zu den Standard Positionssätzen 0..15 bzw. 0..63 können über die Auswahlpunkte "**CAN-Bus**" und "**Tipp & Teach**" auch das aktuell über den CAN-Bus parametrierte Fahrprofil angezeigt werden, bzw. das Fahrprofil für die digitalen Eingänge mögliche "Tipp & Teach" Funktion (siehe Kapitel *8.2 Erweiterte Funktion der dig. Eingänge (Tipp & Teach)*) angezeigt und geändert werden.

Die Angabe (0..15) hinter z.B. dem Feldnamen **Positionierung** zeigt an, dass die Auswahl "**relativ**" für alle Positionen der Positionsgruppe 0 bis 15 gilt. Einige andere Parameter dieses Menüs gelten auch für alle 64 Positionen. Dort steht die Angabe (0..63) hinter dem Feldnamen. Steht keine Angabe hinter dem Feldnamen, so gilt dieser Parameter nur für diese Position.

Im Feld **Positionierung** kann angegeben werden, ob die Zielvorgabe **absolut** (bezogen auf den Referenzpunkt) oder **relativ** interpretiert werden soll. **Relativ** bezieht sich auf die aktuelle Sollposition, beispielsweise bei einer laufenden Positionierung. Die Option **relativ**, **bezogen auf letztes Ziel** hingegen berechnet die neue Position auf Basis der aktuell angefahrenen oder aktuell anzufahrenden Zielposition.

Die Option **relativ** erzielt unterschiedliche Ergebnisse, je nachdem, wie das Feld **Start bei laufender Positionierung** eingestellt ist (siehe unten). Ist die Kombination **relativ/Ende abwarten** angewählt, bezieht sich die neue Position auf die Zielposition.

Bei der Kombination **relativ/Positionierung unterbrechen** wird die neue Zielposition von der gerade aktuellen Sollposition aus gerechnet.

Das Feld **Start bei laufender Positionierung** gibt das Verhalten des Servopositionierreglers an, wenn eine Positionierung noch läuft und der Startbefehl für eine neue Zielposition eintrifft. Es besitzt die Optionen:

- Ende abwarten: die laufende Positionierung wird zu Ende geführt und danach die neue Positionierung begonnen. Die nächste Positionierung kann vor der laufenden Positionierung angewählt werden. Der Start erfolgt dann automatisch nach Abschluss der laufenden Positionierung.
- Positionierung unterbrechen: die laufende Positionierung wird unterbrochen und gleich die neue Position angefahren.
- Startbefehl ignorieren: der Positionierungsauftrag f
 ür die neue Position kann erst nach Beendigung der vorigen Positionierung angew
 ählt und gestartet werden.

Beachten Sie, dass ein prellender Schalter am digitalen Starteingang zu Problemen führen kann, wenn bei einer relativen Positionierung **Ende Abwarten** oder **Positionierung unterbrechen** erlaubt ist. Es kann passieren, dass der Antrieb dann ein Stück zu weit fährt!

Im Feld **Meldungen** können Sie Triggermeldungen parametrieren, die über den Feldbus oder einen Digitalausgang ausgegeben werden können. Diese Triggermeldungen zeigen den **Restweg** bis zum Ende einer laufenden Positionierung an. Der parametrierte Restweg gilt für alle 64 Zielpositionen.

Wie Sie diese Meldung auf die digitalen Ausgänge schalten, können Sie in *Kapitel 8.3 Digitale Ausgänge DOUT0 bis DOUT3* nachlesen. Im Feld **Anfahrverzögerung** können Sie eine Zeit einstellen, die der Servopositionierregler nach einem Startbefehl wartet, bis die Positionierung gestartet wird.

Registerkarte: Fahrprofil

Ziele parametrieren				
Ziel	Einstellungen Fahrprofil			
Position POS 0	Zielposition: 0 Positio	onierbereich (Eingabegrenzen) -32768,000 U 32768,000 U		
POS 1 POS 2 POS 3 POS 4	Geschwindigkeit (015) Fahrgeschwindigkeit:	Zeiten (015) Beschleunigungszeit:		
POS 5 POS 6 POS 7	1000,000 U/min	100,0 ms		
POS 8 POS 9 POS 10		Bremszeit:		
POS 11 POS 12 POS 12		100,0 ms		
POS 13 POS 14 POS 15 POS 16	Beschleunigung (015) Beschleunigung:	Zeitkonstante: ruckfrei (015) Beschleunigung:		
POS 17 POS 18 POS 19	10000 U/min/s	0,00 ms		
POS 20	Bremsbeschleunigung:			
C Tipp & Teach C CAN-Bus				
✓ <u>OK</u> X Abbruch Positionier-Einstellungen <u>III</u> GO!				

Im Feld **Zielposition** kann die Zielposition angegeben werden. Die Zielposition wird unterschiedlich interpretiert, je nachdem ob eine absolute oder relative Positionierung gewählt wurde. (Siehe Registerkarte **Einstellungen**)

Im Feld **Geschwindigkeit** kann die **Fahrgeschwindigkeit** angegeben werden, mit der die Fahrt zum Ziel durchgeführt wird. Die **Endgeschwindigkeit** ist immer Null und kann nicht parametriert werden.

Im Feld **Beschleunigung** können die Beschleunigungen für das Anfahren bzw. Abbremsen des Antriebs parametriert werden.

Im Feld **Zeiten** können die aus Fahrgeschwindigkeit und den Beschleunigungen resultierenden Zeiten abgelesen werden.

Im Feld **Zeitkonstante: ruckfrei** kann eine Filterzeit eingestellt werden, mit der die Beschleunigungsrampen verschliffen werden, um eine ruckbegrenzte Beschleunigung zu realisieren. Die beiden folgenden Bilder zeigen das Geschwindigkeitsprofil einer Positionierung mit und ohne ruckbegrenzter Beschleunigung.

Abbildung 8: Zeitoptimales und ruckbegrenztes Positionieren

Der unter <u>Parameter/Positionierung/E</u>instellungen Positionssätze / Wegprogramm eingestellte Positionierbereich wird im Feld Positionierbereich (Eingabegrenzen) als Information dargestellt.

Die Einstellungen der Sollwertrampe haben auf die Verfahrprofile im Referenzfahr- bzw. Positionierbetrieb keinen Einfluss.

6.6 Ziele anfahren

Es gibt verschiedene Möglichkeiten, Ziele auszuwählen und Positionierungen zu starten:

über die digitalen Eingänge:

Die Einzelziele werden durch die digitalen Eingänge (DIN0...DIN5) selektiert. Eine steigende Flanke am digitalen Eingang DIN6 bewirkt die Übernahme des Zieles und den Beginn der Positionierfahrt. Wie die digitalen Eingänge für die Positionierung eingestellt werden, können Sie in *Kapitel 8.1 Digitale Eingänge DIN0 bis DIN9* nachlesen.

über die serielle Schnittstelle:

Die Fahrt an die Zielpositionen und die Referenzfahrt lassen sich über das Parametrierprogramm auslösen. Aktivieren Sie hierzu den Menüpunkt **Parameter/Positionierung/Ziele anfahren**. Sie können das entsprechende Ziel anfahren, indem Sie auf die jeweilige Schaltfläche klicken.

Außerdem haben Sie die Möglichkeit eine Positionierung mit der Schaltfläche **GO!** mit dem aktuell angezeigten Ziel zu starten (siehe auch *Kapitel 0 Im unteren* Bereich des Fensters können Sie einige Einstellungen für das Wegprogramm vornehmen. Wenn Sie **Wegpro-gramm aktiv** anwählen, wird im Positionierbetrieb das Wegprogramm freigeschaltet. Über die Schaltfläche gelangen Sie in das Menü für das Wegprogramm (siehe *Kapitel 7 Wegprogramm).* Außerdem können Sie hier zwei Einsprungzeilen für das Wegprogramm festlegen.

Positionssätze parametrieren).

ele anfa Gruppe	ahren : 1			Gruppe	: 2		
<u>0</u>	1	2	3	16	17	18	19
4	5	<u>6</u>	Z	20	21	22	23
8	9	10	11	24	25	26	27
12	13	14	15	28	29	30	31
Gruppe	: 3			Gruppe	: 4		
32	33	34	35	48	49	50	51
36	37	38	39	52	53	54	55
40	41	42	43	56	57	58	59
44	45	46	47	60	61	62	63
	Zie	lpositior	n: 0	XX		GO!	
-	וא	1		REF	Start F	Beferen	fabrt

6.7 Setzen von digitalen Ausgängen

Im Positionierbetrieb kann eine übergeordnete Steuerung durch digitalen Ausgänge darüber in Kenntnis gesetzt werden, dass eine Positionierung abgeschlossen ist/wird.

Die digitalen Ausgänge können hierbei folgende Informationen überliefern:

- Ziel erreicht.
- Restweg bis zum Ende des Positioniervorganges erreicht.
- Referenzfahrt durchgeführt.

Die Konfiguration der digitalen Ausgänge ist im *Kapitel 8.3 Digitale Ausgänge DOUT0 bis DOUT3* beschrieben.

6.8 Referenzfahrt

In den meisten Anwendungen, bei denen der Servopositionierregler DIS-2 im Positionierbetrieb arbeitet, muss eine Vereinbarung über eine Nullposition getroffen werden, auf die sich der Lageregler beziehen kann. Diese Position wird **Referenzposition** genannt und muss nach jedem Einschalten des Reglers neu bestimmt werden. Dies geschieht in der sogenannten **Referenzfahrt**. Es werden hierfür eine Reihe unterschiedlicher Methoden bereitgestellt.

Eine Ausnahme bilden hierbei Absolutwertgeber (z.B. SinCos-Geber mit Multiturn Funktionalität. Bei diesen Gebern ist eine Referenzierung nicht zwingend notwendig.

6.8.1 Referenzfahrtmethoden

Es gibt 4 mögliche Ziele für die Referenzfahrt:

- Referenzfahrt auf den negativen oder positiven Endschalter mit bzw. ohne den Nullimpuls des Winkelgebers.
- Referenzfahrt (ohne zusätzliches Signal) auf den negativen oder positiven Anschlag.
- Referenzfahrt auf den Nullimpuls des Winkelgebers.
- Keine Fahrt.

Die Referenzfahrt wird durch das Setzen der Reglerfreigabe oder über Feldbus gestartet. Der erfolgreiche Abschluss der Fahrt wird durch ein gesetztes Statusbit im Gerät angezeigt. Dieser Status kann über einen Feldbus oder über einen Digitalausgang ausgewertet werden.

Die Abläufe der verschiedenen Referenzfahrt-Methoden sind im Folgenden dargestellt. Die eingekreisten Nummern in den Abbildungen entsprechen den Referenzpositionen der entsprechenden Referenzfahrtmethode. Die Nummern entsprechen dabei der in der CANopen DSP402 festgelegten Nummerierung der Referenzfahrtmethoden.

Wie die Referenzfahrtmethoden aktiviert, und die entsprechenden Parameter eingestellt werden, ist in *Kapitel 6.8.2 Parametrierung der Referenzfahrt* beschrieben.

Methode 1: Negativer Endschalter mit Nullimpulsauswertung

Bei dieser Methode bewegt sich der Antrieb zunächst mit Suchgeschwindigkeit in negativer Richtung, bis er den negativen Endschalter erreicht. Dieses wird in Abbildung 9 durch die steigende Flanke (Bewegung von rechts nach links) dargestellt. Danach fährt der Antrieb in Kriechgeschwindigkeit zurück und sucht die genaue Position des Endschalters. Die Nullposition bezieht sich auf den ersten Nullimpuls des Winkelgebers in positiver Richtung vom Endschalter.

Abbildung 9: Referenzfahrt auf den negativen Endschalter mit Auswertung des Nullimpulses

Methode 2: Positiver Endschalter mit Nullimpulsauswertung

Bei dieser Methode bewegt sich der Antrieb zunächst mit Suchgeschwindigkeit in positiver Richtung, bis er den positiven Endschalter erreicht. Dieses wird in Abbildung 10 durch die steigende Flanke dargestellt. Danach fährt der Antrieb in Kriechgeschwindigkeit zurück und sucht die genaue Position des Endschalters. Die Nullposition bezieht sich auf den ersten Nullimpuls des Winkelgebers in negativer Richtung vom Endschalter.

Abbildung 10: Referenzfahrt auf den positiven Endschalter mit Auswertung des Nullimpulses

Bei den Referenzfahrtmethoden 1 und 2 ist darauf zu achten, dass die Nullmarke bzw. der Indexpuls des Gebers nicht mit der Schaltflanke des Endschalter zusammenfällt oder in der Nähe der Schaltflanke liegt, da dies zu einem Versatz der Referenzposition um eine Motorumdrehung führen kann.

Methode 17: Referenzfahrt auf den negativen Endschalter

Bei dieser Methode bewegt sich der Antrieb zunächst mit Suchgeschwindigkeit in negativer Richtung, bis er den negativen Endschalter erreicht. Dieses wird in Abbildung 11 durch die steigende Flanke

dargestellt. Danach fährt der Antrieb in Kriechgeschwindigkeit zurück und sucht die genaue Position des Endschalters. Die Nullposition bezieht sich auf die fallende Flanke vom negativen Endschalter.

Abbildung 11: Referenzfahrt auf den negativen Endschalter

Methode 18: Referenzfahrt auf den positiven Endschalter

Bei dieser Methode bewegt sich der Antrieb zunächst mit Suchgeschwindigkeit in positiver Richtung, bis er den positiven Endschalter erreicht. Dieses wird in Abbildung 12 durch die steigende Flanke dargestellt. Danach fährt der Antrieb in Kriechgeschwindigkeit zurück und sucht die genaue Position des Endschalters. Die Nullposition bezieht sich auf die fallende Flanke vom positiven Endschalter.

Abbildung 12: Referenzfahrt auf den positiven Endschalter

Methoden 33 und 34: Referenzfahrt auf den Nullimpuls

Bei den Methoden 33 und 34 ist die Richtung der Referenzfahrt negativ bzw. positiv. Die Nullposition bezieht sich auf den ersten Nullimpuls vom Winkelgeber in Suchrichtung.

Abbildung 13: Referenzfahrt nur auf den Nullimpuls bezogen

Methode -1: negativer Anschlag mit Nullimpulsauswertung

Bei dieser Methode bewegt sich der Antrieb in negativer Richtung, bis er den Anschlag erreicht. Der Servopositionierregler DIS-2 benötigt mindestens 1 Sekunde, um den Anschlag zu erkennen. Der Anschlag muss mechanisch so dimensioniert sein, dass er bei dem parametrierten Maximalstrom keinen Schaden nimmt. Die Nullposition bezieht sich auf den ersten Nullimpuls des Winkelgebers in positiver Richtung vom Anschlag.

Abbildung 14: Referenzfahrt auf den negativen Anschlag mit Auswertung des Nullimpulses

Methode -2: positiver Anschlag mit Nullimpulsauswertung

Bei dieser Methode bewegt sich der Antrieb in positiver Richtung, bis er den Anschlag erreicht. Der Servopositionierregler DIS-2 benötigt mindestens 1 Sekunde, um den Anschlag zu erkennen. Der Anschlag muss mechanisch so dimensioniert sein, dass er bei dem parametrierten Maximalstrom keinen Schaden nimmt. Die Nullposition bezieht sich auf den ersten Nullimpuls des Winkelgebers in negativer Richtung vom Anschlag.

Abbildung 15: Referenzfahrt auf den positiven Anschlag mit Auswertung des Nullimpulses

Methode -17: Referenzfahrt auf den negativen Anschlag

Bei dieser Methode bewegt sich der Antrieb in negativer Richtung, bis er den Anschlag erreicht. Der Servopositionierregler DIS-2 benötigt mindestens 1 Sekunde, um den Anschlag zu erkennen. Der Anschlag muss mechanisch so dimensioniert sein, dass er bei dem parametrierten Maximalstrom keinen Schaden nimmt. Die Nullposition bezieht sich direkt auf den Anschlag.

Methode -18: Referenzfahrt auf den positiven Anschlag

Bei dieser Methode bewegt sich der Antrieb in positiver Richtung, bis er den Anschlag erreicht. Der Servopositionierregler DIS-2 benötigt mindestens 1 Sekunde, um den Anschlag zu erkennen. Der Anschlag muss mechanisch so dimensioniert sein, dass er bei dem parametrierten Maximalstrom keinen Schaden nimmt. Die Nullposition bezieht sich direkt auf den Anschlag.

Abbildung 17: Referenzfahrt auf den positiven Anschlag

Methode 35: Referenzfahrt auf die aktuelle Position (Keine Fahrt)

Bei der Methode 35 wird bei Start der Referenzfahrt die Nullposition auf die aktuelle Position bezogen.

6.8.2 Parametrierung der Referenzfahrt

Die Parametrierung der Referenzfahrt geschieht im Menü Referenzposition. Dies öffnet sich über <u>Parameter/Positionierung/Referenz-Position</u> oder über den **REF**-Schaltfläche in der Symbolleiste. Es erscheint das untenstehende Fenster:

eferenz Position			
Einstellungen Fah	profil		
Methode:			max. Suchstrecke
Ziel:	Endschalter	•	N D
Bezugspunkt:	Endschalter	•	Max. Positionsgrenzen
Richtung:	negativ	•	65536,000 U
Methode: 17			
 Referenzfahrt bei Reglerfreigabe Fahrt auf Nullposition nach Referenzfahrt 			Offset Startposition
Positioni	er-Einstellungen]	G0!
<u> </u>	X Abbru <u>c</u> h		

Über die Schaltfläche **Positionier-Einstellung** gelangt man in das Menü zur Parametrierung der allgemeine Positionier-Einstellungen (z.B. Positionsgrenzen). Siehe *Kapitel 6.4 Globale Positioniereinstellungen*.

Die Schaltfläche GO! können Sie verwenden, um eine Referenzfahrt auszulösen.

Registerkarte: Einstellungen

Im Feld **Methode** kann eine der in *Kapitel 6.8.1 Referenzfahrtmethoden* beschriebenen Referenzfahrtmethoden ausgewählt werden. Bei der Referenzfahrt dreht der Motor dann bis das **Ziel** aktiviert wurde.

Einen Sonderfall stellt die Methode **Keine Fahrt** dar. Die aktuelle Istposition wird als Referenzposition definiert. Der Antrieb führt in diesem Fall keine Fahrtbewegungen aus.

Ansonsten wird das Ziel mit der **Suchgeschwindigkeit** angefahren. Danach fährt der Antrieb mit **Kriechgeschwindigkeit** zurück, um die Kontaktschwelle genau zu bestimmen. Mit der **Fahrgeschwindigkeit** wird der **Bezugspunkt** (Nullpunkt der Applikation) angefahren. Dieser kann vom **Ziel** abweichen. Beispielsweise wird der Nullimpuls als Bezugspunkt favorisiert, da er eine größere Genauigkeit aufweist.

Die Einstellung für die Such-, Kriech- und Fahrgeschwindigkeit bzw. –beschleunigung finden Sie in der Registerkarte **Geschwindigkeiten/Beschleunigungen/Zeiten**. Die Registerkarte wird weiter unten noch genauer beschrieben.

Falls die eigentliche Referenzposition - also der rechnerische Nullpunkt für die darauf folgenden Positionierungen - eine gewisse Distanz vom Bezugspunkt der Referenzfahrt entfernt ist, kann diese Distanz im Feld **Offset Startposition** angegeben werden.

Ist die Option Fahrt auf Nullposition nach Referenzfahrt aktiviert, fährt der Antrieb mit der Fahrgeschwindigkeit auf die Nullposition, wenn die Referenzfahrt durchgeführt wurde.

> Wenn Sie diese Option aktivieren, darf die Nullposition nicht hinter dem **Ziel** der Referenzfahrt liegen, da dies zu einem Referenzfahrtfehler führen würde.

Es kann eine **maximale Suchstrecke** vorgegeben werden. Wenn innerhalb dieser Suchstrecke kein Endschaltersignal erkannt wurde, gibt der Servopositionierregler DIS-2 eine Fehlermeldung aus. Die Suchstrecke wird von den maximalen Positionsgrenzen abgeleitet. Durch klicken auf **Max. Positionsgrenzen** gelangt man in das Menü zur Parametrierung der allgemeine Positionier-Einstellungen (z.B. Positionsgrenzen). Siehe *Kapitel 6.4 Globale Positioniereinstellungen*.

Ist die Option **Referenzfahrt bei Reglerfreigabe** aktiviert, wird die Referenzfahrt automatisch gestartet, wenn eine Reglerfreigabe vorliegt.

Registerkarte: Fahrprofil

Hier können Sie Geschwindigkeiten und Beschleunigungen für folgende Vorgänge eingeben:

- Suche: Fahrt des Antriebs bis zum Ziel (Endschalter, Anschlag)
- Kriech: Fahrtumkehr (mit geringer Geschwindigkeit) zur Ermittlung der Kontaktschwelle
- Fahrt: Optionale Fahrt zum Nullpunkt (Bezugspunkt) der Applikation

Referenz Position				
Einstellungen Fahrprof	61			
Geschwindigkeit Suche 100,000 U/min	Beschleunigung Suche 1000 U/min/s	1000 U/min/s	Zeiten 100,0 ms	
Kriech 25,000 U/min	Kriech	250 U/min/s	100,0 ms	
Fahrt 1000,000 U/min	Fahrt 10000 U/min/s	10000 U/min/s	100,0 ms	
Positionier-E	instellungen	<u>112</u>	GO!	
7 Wegprogramm

Das Wegprogramm ermöglicht es, mehrere Positionssätze in einer Sequenz zu verketten. Diese Positionen werden nacheinander abgefahren. Die Merkmale des Wegprogramms sind:

- Es sind bis zu 32 Wegprogrammschritte einstellbar.
- Neben linearen Sequenzen, die zwangsläufig terminieren, sind auch ringförmige Verkettungen erlaubt.
- Über einen speziellen digitalen Eingang ist es möglich, innerhalb des Wegprogramms eine Position "außer der Reihe" anzufahren. Diese Position kann wiederum durch digitale Eingänge ausgewählt werden.
- Für jeden Wegprogrammschritt sind bis zu 2 Folgepositionen einstellbar. Damit sind Verzweigungen im Wegprogramm möglich. Die Verzweigung erfolgt in Abhängigkeit des logischen Status von digitalen Eingängen.
- Es können zwei digitale Ausgänge vom Wegprogramm kontrolliert werden. Dafür stehen in jedem Wegprogrammschritt 4 unterschiedliche Optionen zur Verfügung (Ein, Aus, Ziel erreicht, Restwegmeldung).

Bitte beachten Sie: Beim DIS-2 48/10 und beim DIS-2 48/10-IC liegen die digitalen Ausgänge DOUT1 und DOUT2 auf den gleichen Anschlusspins, wie die digitalen Eingänge DIN2 und DIN3. Bei Verwendung der Ausgänge gibt es Einschränkungen bei der Steuerung des Wegprogramms ! Bitte setzen sie in diesem Fall den DIS-2 48/10-FB ein.

Im DIS-2 48/10-FB sind die digitalen Ein- und Ausgänge separat herausgeführt.

- In das Wegprogramm gibt es zwei alternative Einsprungpunkte. Die Einsprungpunkte sind frei parametrierbar und werden mit Hilfe von digitalen Eingängen angestartet. Somit ist ein Wegprogramm mit zwei Einsprüngen möglich, alternativ können zwei kleinere Wegprogramme mit bis zu 32 Gesamtschritten erstellt werden, die völlig unabhängig aufrufbar sind.
- Das Wegprogramm kann komfortabel in der Parametrieroberfläche erstellt und überwacht werden. Die erstellte Applikation wird im Parametersatz oder alternativ in einer Wegprogramm Datei gespeichert und kann in andere DIS-2 Servopositionierregler übertragen werden.
- Die Abarbeitung der Programmzeilen des Wegprogramms erfolgt alle 1,6 ms. Somit ist sichergestellt, dass ein vom Wegprogramm gesetzter Ausgang für min. 1,6 ms gesetzt bleibt.

Die Betriebsart Wegprogramm wird über die entsprechende Optionsschaltfläche im Kommandofenster aktiviert (siehe Kap. 6.2). Die Einstellung kann im Servopositionierregler dauerhaft gespeichert werden.

Die Steuerung des Wegprogramms erfolgt über die digitalen Eingänge. Digitale Eingänge bei denen die Pegel (High/Low) ausgewertet werden müssen für mindestens 1,6 ms (Zykluszeit der Ablaufsteuerung für das Wegprogramm) stabil anstehen, damit ein Pegel sicher erkannt wird. Flankensensitive Eingänge müssen für mindestens 100µs anstehen. Die digitalen Eingänge die sonst für das Starten und Vorgeben eines Positionssatzes genutzt werden, werden bei aktiviertem Wegprogramm folgendermaßen verwendet:

DIN:	Funktion:	Erklärung:
DIN 0	NEXT2	Steigende Flanke: weiter mit der Folgposition 2.
DIN 1	NEXT1	Steigende Flanke: weiter mit der Folgposition 1.
		(NEXT1 hat Priorität gegenüber NEXT2, wenn beide gleichzeitig geschaltet
		werden)
DIN 2	#STOP	Low = eine eventuell laufende Positionierung wird unterbrochen. Das Pro-
		gramm verharrt in der aktuellen Wegprogrammzeile.
DIN 3	WEG	High = Aktivierung des Wegprogramms.
		Low = Position zu Ende fahren, dann normaler Positionierbetrieb mit Ziel-
		auswahl über DIN0, DIN1, DIN2 sowie Positionsgruppenauswahl über
		DIN4 und DIN5.
DIN 4	START1	Steigende Flanke: Fahren in eine definierte Startposition. Starten des Weg-
		programms.
DIN 5	START2	Steigende Flanke: Fahren in eine definierte Startposition. Starten des Weg-
		programms.
		(START1 hat Priorität gegenüber START2, wenn beide gleichzeitig geschal-
		tet werden)
DIN 6	Start	Steigende Flanke:
	Positionierung /	Wenn DIN 3 Low: Start Positionierung
	Referenzfahrt	Wenn DIN 3 High: Start Referenzfahrt

Tabelle 8: Wegprogramm: Belegung der digitalen Eingänge (Standard)

Tabelle 9: Wegprogramm: Belegung der digitalen Eingänge (Neue I/O Belegung)

DIN:	Funktion:	Erklärung:
DIN 0	WEG	High = Aktivierung des Wegprogramms. Low = Position zu Ende fahren, dann normaler Positionierbetrieb mit Ziel- auswahl über DIN0, DIN1, DIN2 sowie Positionsgruppenauswahl über DIN4 und DIN5.
DIN 1	#STOP	Low = eine eventuell laufende Positionierung wird unterbrochen. Das Pro- gramm verharrt in der aktuellen Wegprogrammzeile.
DIN 2	NEXT2	Steigende Flanke: weiter mit der Folgposition 2.
DIN 3	START2	 Steigende Flanke: Fahren in eine definierte Startposition. Starten des Weg- programms. (START1 hat Priorität gegenüber START2, wenn beide gleichzeitig geschal- tet werden)
DIN 4	NEXT1	Steigende Flanke: weiter mit der Folgposition 1. (NEXT1 hat Priorität gegenüber NEXT2, wenn beide gleichzeitig geschaltet werden)
DIN 5	START1	Steigende Flanke: Fahren in eine definierte Startposition. Starten des Weg- programms.

DIN 6	Start	Steigende Flanke:
	Positionierung /	Wenn DIN 3 Low: Start Positionierung
	Referenzfahrt	Wenn DIN 3 High: Start Referenzfahrt

Die neue IO-Belegung gemäß Tabelle 9 ermöglicht eine bessere Nutzung der Funktionen im Wegprogramm trotz Doppelbelegung der Signale DIN2 / DOUT1 und DIN3 / DOUT2 auf dem Steckverbinder X1.Sie wird über das entsprechende Kontrollkästchen im Kommandofenster aktiviert (siehe Kap. 6.2).

Wenn der digitale Eingang **WEG** auf 0 V geschaltet wird, ist das Wegprogramm inaktiv. Es können normale Positionierungen über die digitalen Eingänge abgerufen werden, allerdings ist die Anzahl der Ziele auf die Hälfte, also je nach Betriebsart auf 32 bzw. 8 Ziele, reduziert, wie Tabelle 10 darstellt.

Tabelle 10: Verfügbare Positionssätze bei Aktivem Wegprogramm und Eingang WEG = 0

Belegung :	64 Positionen:	16 Positionen:	Erklärung:
Tabelle 8	4 Gruppen à 8 Positionen	8 vollständige Positionen	Standard-Belegung,
	Pos. 07, 1623, 3239, 4865	Pos. 07	Steuersignal WEG auf DIN 3
Tabelle 9	4 Gruppen à 8 Positionen	8 vollständige Positionen	Neue Belegung,
	Pos. 0, 2, 4, 6,60, 62	Pos. 0, 2, 4, 6, 8, 10, 12, 14 16	Steuersignal WEG auf DIN 0

7.1 Wegprogramm erstellen

Über **<u>Parameter/Positionierung/Wegprogramm</u>** öffnet sich das Menü zum Verwalten und erstellen der Wegprogramme mit bis zu 32 Programmzeilen.

Weg	programm								
Nr.	CMD	STOP	NEXT1	Pos/Zeile 1	NEXT2	Pos/Zeile 2	DOUT1	DOUT2	
0	Pos.	ignorieren	Pos. beenden	0	ignorieren	-	Aus	Aus	
1	Pos.	ignorieren	ignorieren	-	Pos. beenden	1	Aus	Aus	
2	Pos.	ignorieren	Pos. beenden	2	ignorieren	-	Aus	Aus	
3	Pos.	ignorieren	ignorieren	-	Pos. beenden	3	Aus	Aus	
4	Pos.	ignorieren	Pos. beenden	4	ignorieren	-	Aus	Aus	
5	Pos.	ignorieren	ignorieren	-	Pos. beenden	5	Aus	Aus	
6	Pos.	ignorieren	Pos. beenden	6	ignorieren	-	Aus	Aus	
7	Pos.	ignorieren	ignorieren	-	Pos. beenden	7	Aus	Aus	
8	Pos.	ignorieren	Pos. beenden	8	ignorieren	-	Aus	Aus	┓
Pr	Datei >> Programm Zeile editieren Modus Programm >> Datei X Beenden								

Hier haben Sie die Möglichkeit ein bereits erstelltes Wegprogramm über die Schaltfläche **Datei >> Programm** in den Servopositionierregler zu laden, oder mit der Schaltfläche **Programm >> Datei** ein soeben erstelltes Programm zu sichern.

Im Feld **Modus** können Sie zwischen dem Eingabemodus Edit und dem Überwachungsmodus Debug wählen. Eine genauere Beschreibung des Überwachungsmodus finden sie in Kaptitel *7.2 Wegprogramm debuggen*.

Wenn Sie auf die Schaltfläche **Zeile editieren** oder auf eine Zeile in der tabellarischen Auflistung klicken öffnet sich ein weiteres Fenster in dem Sie die Befehle für die ausgewählte Wegprogrammzeile festlegen können.

Es gibt folgende grundlegende Wegprogrammbefehle

- Positionsverzweigung (und lineare Positionsabfolge)
- Sprungverzweigung
- Pegelabfrage (und unbedingter Programmsprung)
- Programmende

Im *Kapitel 11.9 Wegprogramm: Beispiele* sind drei kleine Bespielapplikationen für ein Wegprogramm dargestellt.

In den *Kapiteln 7.1.2 Programmende* bis 7.1.5 Pegelabfrage werden die verschiedenen Wegprogramme näher erläutert.

7.1.1 Optionen des Wegprogramms

Im Feld **Optionen** können Sie die Auswertung der digitalen Eingänge NEXT1 und NEXT2 festlegen. Haben Sie **NEXT1 auswerten** oder **NEXT2 auswerten** gesetzt, so erscheint im Unteren Feld des Fensters ein zusätzliches Feld mit den Eingabeoptionen für das entsprechende Signal:

- Ignorieren, falls Ziel nicht erreicht: Wenn bei einer laufenden Positionierung das Signal kommt wird es ignoriert. Ist keine Positionierung gerade in Bearbeitung wird die neue Folgeposition / Folgezeile X angefahren.
- Position / Zeile sofort anfahren: Die neue Folgeposition / Folgezeile X wird sofort angefahren. Die gerade bearbeitete Positionierung wird sofort unterbrochen.
- Pos. beenden, dann Folgepos. / Zeile: Die laufende Positionierung wird abgearbeitet. Anschließend wird die Folgeposition / Folgezeile X gemäß des angekommenen Signals angefahren.

Grundsätzlich gilt:

- Sind beide NEXT Signale nicht auf "auswerten" parametriert wird immer Folgeposition / Folgezeile 1 angefahren.
- Steht NEXT1 auf "auswerten", aber NEXT2 ist anders parametriert, so wird immer NEXT1 verwendet.
- Steht NEXT2 auf "auswerten", aber NEXT1 ist anders parametriert, so wird immer NEXT2 verwendet.

Zusätzlich können Sie im Feld **Optionen** auch folgende Zustände für die digitalen Ausgänge DOUT1/DOUT2 festlegen:

- 🛠 Ein
- Aus
- Ziel erreicht
- Restwegmeldung

Grundsätzlich gilt:

- Die Option "Ein" oder "Aus" wird immer sofort übernommen.
- Die Optionen "Ziel erreicht" oder "Restwegmeldung" wird erst übernommen, wenn die Positionierung der Wegprogrammzeile gestartet wird.

Die Reaktion auf das Stopp-Signal kann ebenfalls in Feld Optionen festgelegt werden. Falls das Digitale Stopp-Signal ausgewertet wird, werden folgende Aktionen vorgenommen:

- Eine eventuell laufende Positionierung wird unterbrochen. Der Antrieb f\u00e4hrt dabei mit der Bremsrampe herunter. Sobald das Stopp-Signal wieder auf HIGH geht, wird die Positionierung fortgesetzt
- Die Positionsverzweigung wird nicht ausgeführt, das Programm verharrt in der aktuellen Programmzeile
- Die Flankenauswertung der Signale NEXT1 und NEXT2 wird auch fortgesetzt, wenn das Stopp-Signal aktiv ist.
- Die Ausgänge DOUT1 und DOUT2 werden nicht vom Stopp-Signal beeinflusst.

7.1.2 Programmende

Eine noch laufende Positionierung wird zu Ende gefahren, danach wird das Programm an dieser Stelle beendet. Es werden keine digitalen Ausgänge gesetzt / zurückgesetzt. Es wird keine weitere Positionierung angestartet.

Ist **Stopp-Signal auswerten** aktiviert, so kann die noch laufende Positionierung unterbrochen werden.

7.1.3 Positionsverzweigung

Wegprogramm Zeile 0	
Befehlsart Positionsverzweigung Sprungverzweigung Pegelabfrage Extended Positioning Programmende	Optionen ✓ NEXT1 auswerten ✓ NEXT2 auswerten ✓ Stopp-Signal auswerten DOUT1 Aus ▼ DOUT2 Aus ▼
NEXT1 Folgeposition 1 C Ignorieren, falls Ziel nicht erreicht C Position sofort anfahren Pos. beenden, dann Folgepos. <u>K B</u> eenden	NEXT2 Folgeposition 2 © Ignorieren, falls Ziel nicht erreicht © Position sofort anfahren © Pos. beenden, dann Folgepos.

In Abhängigkeit von NEXT1 und NEXT2 werden unterschiedliche Positionen angefahren. Das Wegprogramm fährt in der folgenden Befehlszeile mit der Ausführung fort.

Abbildung 18: Wegprogramm - Positionsverzweigung

Wenn das digitale Signal NEXT1 auf HIGH geht (steigende Flanke), wird Position A angefahren. Wenn das digitale Signal NEXT2 auf HIGH geht (steigende Flanke), wird Position B angefahren. Wenn keine steigenden Flanken erkannt wurden, verbleibt das Wegprogramm im Wartezustand.

Wenn weder **NEXT1 auswerten** noch **NEXT2 auswerten** gesetzt ist, wird immer das unter NEXT1 parametrierte Ziel angefahren. Somit kann eine lineare Positionierung (z.B. POS1 \rightarrow POS2 \rightarrow POS3) durchgeführt werden.

In Abbildung 19 wird angenommen, dass in Programmschritt 10 eine Positionierung angestartet wird. Mit dem Start der Positionierung (10) wechselt das Wegprogramm in die Folgezeile, Programmschritt 11. Unter der Annahme, dass NEXT1/2 auf "Pos. beenden, dann Folgeposition" parametriert wurde, findet die Abfrage der NEXT1/2 Eingänge im hinteren Teil des Programmschrittes statt, wenn die Meldung "Ziel erreicht" aktiviert wurde. Es werden aber schon die Flanken ausgewertet, die seit Beginn des Positioniervorganges entdeckt wurden. Falls das Signal "Ziel erreicht" gesetzt wurde, ohne dass eine steigende Flanke von NEXT1/2 erkannt wurde, verharrt das Programm im Programmschritt 11, bis mindestens eine Flanke von NEXT1/2 detektiert werden konnte.

Programmschritt	Programmschritt 10	Programmschritt 11	
Positionierung		Fahre auf Position (Programmschritt 10)	Neue Position
Ziel erreicht			-
Flanke NEXT1/2 gefunden			
DOUT1/2=High/ Low	DOUT1/2 High/Low Programmschritt 10	DOUT1/2 High/Low : Programmschritt 11]
DOUT1/2= Ziel err. / Restweg		Ziel Erreicht / Restweg (Positionierung Programmschritt 10)]
Aktivitäten Wegprogramm]
	Neue Position anfahren	NEXT1/2 auswerten Neues Sprungziel/ neue Positionierung berechnen	

Abbildung 19: Zeitdiagramm Positionsverzweigung

7.1.4 Sprungverzweigung

Wegprogramm Zeile 4				
Befehlsart Positionsverzweigung Sprungverzweigung Pegelabfrage Extended Positioning Programmende	Optionen ✓ NEXT1 auswerten ✓ NEXT2 auswerten ✓ Stopp-Signal auswerten DOUT1 Aus			
NEXT1 Folgezeile 1 5 T C Ignorieren, falls Ziel nicht erreicht C Zeile sofort anfahren C Pos. abschließen, dann Zeile	NEXT2 Folgezeile 2 Ignorieren, falls Ziel nicht erreicht Zeile sofort anfahren Pos. abschließen, dann Zeile			
X Beenden				

In Abhängigkeit von NEXT1 und NEXT2 fährt das Programm in unterschiedlichen Zeilen mit der Ausführung fort. Wenn das digitale Signal NEXT1 auf HIGH geht (steigende Flanke), wird in Zeile X mit der Programmausführung fortgefahren. Wenn das digitale Signal NEXT2 auf HIGH geht (steigende Flanke), wird in Zeile Y mit der Programmausführung fortgefahren. Wenn keine steigenden Flanken erkannt wurden, verbleibt das Wegprogramm im Wartezustand.

Wenn weder **NEXT1 auswerten** noch **NEXT2 auswerten** gesetzt ist, kann eine Folgezeile, die automatisch angesprungen wird, angegeben werden.

Abbildung 20: Wegprogramm - Sprungverzweigung

In Abbildung 21 wird angenommen, dass in Programmschritt 10 eine Positionierung gestartet wurde. Mit dem Start der Positionierung (10) wechselt das Wegprogramm in den Folgezustand.

Unter der Annahme, dass NEXT1/2 auf "Zeile sofort anfahren" parametriert wurde, findet die Abfrage der NEXT1/2 Eingänge schon im aktiven Positionierungsprozess statt. Es wird weiterhin angenommen, dass das NEXT1/2 –Signal aktiv wird, bevor die Positionierung beendet wurde. Es findet die Auswertung statt, und die entsprechende Wegprogrammzeile (Folgezeile 1 oder 2, je nachdem, ob NEXT1 oder NEXT2 als erstes aktiv wurden) wird angesprungen und abgearbeitet.

Abbildung 21: Zeitdiagramm Sprungverzweigung

7.1.5 Pegelabfrage

Yegprogramm Zeile 8					
Befehlsart	Optionen				
C Positionsverzweigung	▼ NEXT1 auswerten				
C Sprungverzweigung	NEXT2 auswerten				
Pegelabfrage	🔲 Stopp-Signal auswerten				
C Extended Positioning	DOUT1 Aus 💌				
O Programmende	DOUT2 Aus 🔻				
NEXT1 = HIGH	NEXT1 = LOW				
Folgezeile 1	Folgezeile 2 9 💌				
C Pos. beenden, dann auswerten					
X Beenden					

In Abhängigkeit des Pegels von NEXT1 fährt das Programm in unterschiedlichen Zeilen mit der Ausführung fort.

Abbildung 22: Wegprogramm Pegelabfrage

Wenn das digitale Signal NEXT1 HIGH ist, wird in Zeile X mit der Programmausführung fortgefahren. Wenn das digitale Signal NEXT1 LOW ist, wird in Zeile Y mit der Programmausführung fortgefahren.

Ein unbedingter Programmsprung (z.B. für Endlosschleifen) kann erzeugt werden, indem für NEXT1=HIGH und NEXT1=LOW das gleiche Sprungziel angegeben wird.

In Abbildung 23 wird die Pegelabfrage von NEXT1/2 gleich zu Beginn des Programmschritts 11 durchgeführt; in Abhängigkeit davon wird die Zeile des nächsten Wegprogrammbefehls ermittelt.

7.1.6 Extended Positioning

Wegprogramm Zeile 3	
Wegprogramm Zeile 3 Befehlsart Positionsverzweigung Sprungverzweigung Pegelabfrage Extended Positioning Programmende NEXT1 Folgeposition 1 64	Optionen ■ NEXT1 auswerten ✓ Stopp-Signal auswerten DOUT1 Aus ▼ DOUT2 Aus ▼
Beenden	

Dieser Befehl eröffnet dem Anwender die Möglichkeit, auf Positionsdatensätze größer 63 zuzugreifen. Folgende Positionsdatensätze stehen zur Verfügung:

Wertebereich Beschreibung des Positionsdatensatzes

64	CAN
65	¹⁾ Referenzfahrt Phase 0 (Suchfahrt)
66	¹⁾ Referenzfahrt Phase 1 (Kriechfahrt)
67	¹⁾ Referenzfahrt Phase 2 (Fahrt auf Nullposition)
68	Profibus
69	Reserve
70	Tippbetrieb

¹⁾ Beim Starten eines Referenz-Positionsdatensatzes wird keine Referenzfahrt, sondern eine Positionierung auf "0" aktiviert.

Die Funktionalität entspricht in etwa der einer Positionsverzweigung. Hierbei eröffnet sich jedoch dem Anwender die Möglichkeit, z.B. ein Wegprogramm mit festen und variablen Vorgaben zu kombinieren.

Beispiel: In dem unten dargestellten Wegprogramm wird in Programmzeile 3 auf den Positionsdatensatz 64 (CAN) verzweigt. Bei Ausführung dieser Programmzeile wird der CAN-Positionsdatensatz gestartet. Somit hat der Anwender an dieser Stelle die Möglichkeit, über CANopen variable Werte vorzugeben (z.B. Position, Geschwindigkeit, Beschleunigung, …).

Weg	programm								
Nr.	CMD	STOP	NEXT1	Pos/Zeile 1	NEXT2	Pos/Zeile 2	DOUT1	DOUT2	
0	Pos.	akzept.	automatisch	1	ignorieren	-	Aus	Aus	
1	Pos.	akzept.	automatisch	2	ignorieren	-	Aus	Aus	
2	Pos.	akzept.	automatisch	3	ignorieren	-	Aus	Aus	-
3	X-Pos.	akzept.	automatisch	64	-	-	Aus	Aus	
4	Sprung	akzept.	automatisch	5	ignorieren	-	Aus	Aus	
5	Sprung	akzept.	automatisch	6	ignorieren	-	Aus	Aus	
6	Ende	akzept.	-	-	-	-	-	-	
7	Ende	akzept.	-	-	-	-	-	-	
8	Ende	akzept.	-	-	-	-	-	-	-
Da Pro	Datei >> Programm Zeile editieren Modus Programm >> Datei X Beenden								

7.2 Wegprogramm debuggen

Wenn Sie den Modus auf Debug umstellen, erscheinen zusätzliche Statusinformationen im Wegprogramm Fenster:

- Wegprogramm aktiv: Zeigt an wenn das Wegprogramm läuft und abgearbeitet wird.
- Wegprogramm halt: Zeigt an wenn das Wegprogramm durch das Stopp-Signal angehalten wurde.
- NEXT1 / NEXT2: Zeigt den aktuellen Zustand der digitalen Eingänge für NEXT1 & 2 an.
- DOUT1 / DOUT2: Zeigt den aktuellen Zustand der digitalen Ausgänge DOUT1 & 2 an.
- Zeile: Gibt die Zeile an, in der sich das Wegprogramm zur Zeit befindet. Zusätzlich wird die aktuelle Zeile in der tabellarischen Auflistung blau hinterlegt.

*	Position: Gibt den zuletzt angefahrenen Positionssatz a	n.
	0	

Wegprogramm									
Nr.	CMD	STOP	NEXT1	Pos/Zeile 1	NEXT2	Pos/Zeile 2	DOUT1	DOUT2	
0	Pos.	ignorieren	automatisch	63	ignorieren	-	Aus	Aus	
1	Pos.	ignorieren	automatisch	62	ignorieren	-	Aus	Aus	
2	Pos.	ignorieren	automatisch	61	ignorieren	-	Aus	Aus	
3	Pos.	ignorieren	automatisch	50	ignorieren	-	Aus	Aus	
4	Sprung	ignorieren	ignor. (Ziel)	5	ignor. (Ziel)	10	Ein	Ziel	
5	Pos.	Pos. ignorieren automatisch		10	ignorieren	-	Ein	Aus	
6	Pos.	ignorieren	automatisch	11	ignorieren	-	Ein	Aus	
7	Pos.	ignorieren	automatisch	12	ignorieren	-	Ein	Aus	
8	Pos.	ignorieren	automatisch	40	ignorieren	-	Ein	Aus	┏
D.	Datei >> Programm Zeile editieren Modus © Debug © Edit Programm >> Datei Wegprogramm aktiv NEXT1 DOUT1 Zeile 4								
	X <u>B</u> eende	n	We	gprogramm H	alt 🕐 NEXT2	ODU1	2 🕗	Position: 50)

ຖື

8 Funktion der Ein- und Ausgänge

Informationen über die Steckerbelegung der Ein- und Ausgänge finden Sie in *Kapitel* 11.16 Steckverbinder am DIS-2 48/10.

8.1 Digitale Eingänge DIN0 bis DIN9

Der Servopositionierregler DIS-2 verfügt über zehn digitale Eingänge (DIN0 bis DIN9).

Aufgrund der begrenzten Anzahl von Anschlüssen am Steckverbinder sind allerdings einige der digitalen Eingänge nicht in allen Parametrierungen aktiv.

Die folgende Tabelle gibt eine Übersicht bei welcher Parametrierung die digitalen Eingänge nicht genutzt werden können (X = nicht verfügbar):

Tabelle 11: DIS-2 48/10 Digitale Eingänge – Kombinationsmöglichkeiten	
---	--

	DIN0	DIN1	DIN2	DIN3	DIN4	DIN5	DIN6	DIN7	DIN8	DIN9
Analoge Eingänge aktiv	Х	Х	Х	Х						
CAN Aktiv					Х	Х				
Inkrementalgeberemulation aktiv			Х	Х						
Analogmonitor aktiv							Х			
Digitale Ausgänge 1 & 2 aktiv			X	Х						

Tabelle 12:DIS-2 48/10-IC Digitale Eingänge – Kombinationsmöglichkeiten

	DIN0	DIN1	DIN2	DIN3	DIN4	DIN5	DIN6	DIN7	DIN8	DIN9
Analoge Eingänge aktiv	Х	Х	Х	Х						
CAN Aktiv					Х	Х				
Inkrementalgeberemulation aktiv			Х	Х						
Analogmonitor aktiv										
Digitale Ausgänge 1 & 2 aktiv			Х	Х						

Tabelle 13: DIS-2 48/10-FB Digitale Eingänge – Kombinationsmöglichkeiten

	DIN0	DIN1	DIN2	DIN3	DIN4	DIN5	DIN6	DIN7	DIN8	DIN9
Analoge Eingänge aktiv	Х	Х	Х	Х						
CAN Aktiv										
Inkrementalgeberemulation aktiv			Х	Х						
Analogmonitor aktiv										
Digitale Ausgänge 1 & 2 aktiv										

Eine Übersicht über die verfügbaren digitalen Eingänge und die aktuelle Beschaltung bietet das Menü <u>Anzeige/Digitale Eingänge:</u>

Tabelle 14: Digitale Eingänge – Belegung

Eingang	Funktion	Beschreibung
DIN0	Auswahl	Positioniermodus:
DIN1	Positionier- parametersatz	• DIN5 & DIN4: Auswahl der Positionierparametergruppe
DIN2	oder	DIN3 DIN0: Auswahl der Zielposition innerhalb einer Gruppe
DIN3	Steuerung	Wegprogrammodus:
DIN4	Wegprogramm	Belegung siehe Kanitel 7
DIN5		
DIN6	Start Positionierung	Bei einer steigenden Flanke wird eine Positionierung auf dem zuvor gewähl- ten Parametersatz ausgeführt
DIN7	Endschalter Negativ	Positive (DIN8), bzw. negative (DIN7) Sollwerte werden nur freigegeben, wenn die Endschaltereingänge passiv sind.
DIN8	Endschalter Positiv	(+24V wenn Offner / 0V wenn Schleßer) Bei fehlendem Signal bremst der Antrieb an der Stromgrenze auf Drehzahl Null, die Endstufe bleibt eingeschaltet.
DIN9	Reglerfreigabe	Bei einer steigenden Flanke wird die Regelung initialisiert und anschließend inkl. Leistungsteil freigeschaltet. Bei einer fallenden Flanke wird der Motor auf Drehzahl Null gebremst, anschließend wird die Endstufe abgeschaltet.
	Fehler Quittieren	Wenn der Regler auf Störung steht, wird die fallende Flanke genutzt, um anstehende Fehler zu quittieren. Gelingt dies, geht der Regler in den Status Betriebsbereit und mit der nächsten steigenden Flanke kann die Endstufe wieder freigeschaltet werden.
	Endschalter quittieren	Wenn der Motor auf den Endschalter gefahren ist, wird die fallende Flanke genutzt, um eine Weiterfahrt in die selbe Richtung wieder zu erlauben.

Die digitalen Eingänge **DIN0 – DIN3** können darüber hinaus in allen Betriebarten benutzt werden, um aus ihnen einen Offset für die CAN-Knotennummer abzuleiten. (Siehe *Kapitel* 8.1.1 *Einstellung der digitalen Eingänge*)

8.1.1 Einstellung der digitalen Eingänge

Im Menü **<u>Parameter/IOs/Digitale Eingänge</u>** können den digitalen Eingänge DIN0 – DIN5 Funktionalitäten zugewiesen werden.

Digitale Eingänge							
Digitale Eingänge 0 3							
🗌 Offset	CAN-Knotennummer						
🔽 AIN's	als DIN's interpretrieren						
DINO :	Auswahl Positioniersatz						
DIN1 :	Auswahl Positioniersatz						
DIN2 :	inaktiv (Inkrementalgeber)						
DIN3 :	inaktiv (Inkrementalgeber)						
DIN4 :	Auswahl Positioniersatz						
DIN5 :	Auswahl Positioniersatz						
DING :	Positionierung: Start						
<u> </u>	K Abbruch Funktionsübersicht						

Zur Adressierung einer Zielposition aus den 64 frei programmierbaren Zielen kann in der Betriebsart Positionierung ein 6 Bit breiter **Positionsselektor** vereinbart werden (DIN0 – DIN5). Für die Positionierung ist zusätzlich der **Start** Eingang (DIN6) relevant.

Aus den digitalen Eingängen DIN0 - DIN3 kann wahlweise auch ein Offset für die CAN-Knotenadresse abgeleitet werden.

Diese Funktionalitäten von DIN0 – DIN3 können nur verwendet werden, wenn die analogen Eingänge AIN0 und AIN1 als digitale Eingänge genutzt werden. Wenn die Inkrementalgeberemulation aktiv ist, stehen DIN2 & DIN3 nicht zur Verfügung.

8.2 Erweiterte Funktion der dig. Eingänge (Tipp & Teach)

Wird im **Kommandos** Fenster die Option **Tipp & Teach** aktiviert, so kann die erweiterte Belegung der digitalen Eingänge genutzt werden.

Diese Funktion bietet die Möglichkeit über die digitalen Eingänge beliebige Zielpositionen anzufahren und zu programmieren. Die Programmierprozedur wird im *Kapitel 8.2.1 Position Teachen* beschrieben. Des Weiteren besteht die Möglichkeit, über einen digitalen Eingang eine Referenzfahrt zu starten, oder über einen weiteren digitalen Eingang eine Positionierung abzubrechen und den Antrieb zu stoppen ohne die Endstufe auszuschalten.

Die digitalen Eingänge die sonst für das Starten und Vorgeben eines Positionssatzes genutzt werden, werden bei aktivierter erweiterter Belegung folgendermaßen verwendet:

DIN:	Funktion:	Erklärung:
DIN 0	Spez. / Posi	High = Aktivierung der erweiterten Belegung. Low = Normaler Positionierbetrieb mit Zielauswahl über DIN1, DIN2, DIN3 sowie Positionsgruppenauswahl über DIN4 und DIN5 (Nur gerade Positionsnummern möglich).
DIN 1	#STOP (low aktiv)	Low = eine eventuell laufende Positionierung wird abgebrochen. #STOP hat Priorität gegenüber TIPP POS, TIPP NEG und Start Referenzfahrt. Die dabei verwendete Bremsrampe wird im Fenster Sicherheitsparameter ein- gestellt. (siehe <i>Kapitel 4.6 Sicherheitsparameter wählen</i>)
DIN 2	-	-
DIN 3	ТЕАСН	High = Aktivierung der Teach Funktion. (siehe Kapitel 8.2.1 Position Teachen)
DIN 4	TIPP (neg)	High = Positionieren in negative Richtung mit den Tipp & Teach Verfahrparametern. (siehe <i>Kapitel 6.5 Positionssätze parametrieren</i>)
DIN 5	TIPP (pos)	High = Positionieren in positive Richtung mit den Tipp & Teach Verfahrparametern. (siehe <i>Kapitel 6.5 Positionssätze parametrieren</i>)
DIN 6	Start Positionierung / Referenzfahrt	Steigende Flanke: Wenn DIN 0 Low: Start Positionierung Wenn DIN 0 High: Start Referenzfahrt

Tabelle 15: Tipp & Teach: Belegung der digitalen Eingänge

8.2.1 Position Teachen

Mit dem im Folgenden beschriebenen Ablauf können mittels der digitalen Eingänge Positionen angefahren (Tippen) und in den reglerinternen, bis zu 64 Positionssätzen abgespeichert werden (Teachen):

Die Reglerfreigabe muss während des Teachens gesetzt sein.

- (1) Aktivieren des Tipp & Teach Modus über das Kommandofenster mit DIN 0 (siehe Kapitel 8.2 Erweiterte Funktion der dig. Eingänge (Tipp & Teach)).
- (2) Anfahren der gewünschten Zielposition mit DIN 4 / DIN 5.
- (3) Aktivieren der Teach Funktion (Stufe 1) durch Schalten von DIN 3 auf high. Dadurch wird die Funktion "Referenzfahrt: Start" des digitalen Eingangs DIN 6 deaktiviert und die Teach Funktion aktiviert.
- (4) Aktivieren der Teach Funktion (Stufe 2) durch Schalten von DIN 6 auf high.
- (5) Mittels der digitalen Eingänge DIN 0 bis DIN 5 den Positionssatz auswählen, in den die aktuelle Istposition gespeichert werden soll.
- (6) Mit der fallenden Flanke an DIN 6 wird die aktuelle Istposition in den ausgewählten Positionssatz übernommen.
- (7) Die digitalen Eingänge werden nun f
 ür eine parametrierte Zeit ignoriert, bevor sie wieder zur Verf
 ügung stehen. Diese Zeit wird im Fenster Ziele Parametrieren im Positionssatz Tipp&Teach eingestellt.

Achtung!

Die Position(en), die mittels der Teach Funktion in den/die Positionssätz(e) geschrieben werden, werden **nicht** automatisch dauerhaft in diesen gespeichert.

Mit der Taste Save Parameter können diese jedoch dauerhaften gesichert werden.

Das folgende Diagramm zeigt den zeitlichen Ablauf beim Teachen einer Zielposition:

Abbildung 24: Teachen einer Zielposition

- t_{min} >= 1,6 ms
- t_{setup} >= 1,6 ms
- t_{teach} >= 1,6 ms
- $t_{set pos} >= 5 ms$
- $t_{hold} >= 1,6 \text{ ms}$
- t_{ignore} >= 200 ms (Parametrierbar)

\triangle

Achtung!

Nach Ablauf der Zeit t_{ignore} nehmen die digitalen Eingänge wieder die Funktionalität die vor dem Teach Modus bestand an.

Unter Umständen kann es dem zu Folge zu einem Anfahren des Antriebs kommen.

8.3 Digitale Ausgänge DOUT0 bis DOUT3

Zur Anzeige ausgewählter Betriebszustände des Servopositionierregler DIS-2 stehen vier digitale Ausgänge (DOUT0 - DOUT3) zur Verfügung:

- Der Ausgang DOUT0 ist fest verschaltet und zeigt die Betriebsbereitschaft des Servopositionierreglers an. Betriebsbereitschaft wird angezeigt, wenn der Servopositionierregler DIS-2 nach Power-ON gestartet ist und kein Fehler vorliegt, oder wenn ggf. vorliegende Fehler vom Anwender quittiert wurden.
- Auf die digitale Ausgänge (DOUT1 & DOUT2) können verschieden Funktionalitäten gelegt werden (siehe Kapitel: 8.3.1 Einstellung der digitalen Ausgänge).
- Der digitale Ausgang DOUT3 ist fest der Haltebremse zugeordnet (siehe Kapitel 8.5 Haltebremse DOUT3).

Eine Übersicht über die verfügbaren digitalen Ausgänge und die aktuelle Funktionszuordnung bietet das Menü <u>Anzeige/Digitale Ausgänge</u>.

I	Digitale Ausgänge - Funktionsübersicht								
	Standard Ausgänge								
	🥝 DOUT O	Regler betriebsbereit							
	🔵 DOUT 1	Aus							
	O DOUT 2	Aus							
	ODUT 3	Haltebremse gelüftet							
	✓ <u>0</u> K								

8.3.1 Einstellung der digitalen Ausgänge

Mit dem Menü **Parameter/<u>I</u>Os/Digitale <u>A</u>usgänge** können die Digitalen Ausgänge DOUT1 & DOUT2 parametriert werden:

Digitale Ausg	Digitale Ausgänge							
Standard A	Standard Ausgänge							
DOUT O	Regler betriebsbereit							
DOUT 1	I²t: Motor / Servo							
DOUT 2	Restwegmeldung							
DOUT 3	Haltebremse gelüftet							
<u>✓ 0</u> K X Abbru <u>c</u> h								

DOUT1 und DOUT2 können unabhängig mit je einem der folgenden Signale belegt werden:

- AUS, d.h. Ausgang inaktiv, LOW-Pegel über eingebauten Pull-Down Widerstand
- EIN, d.h. Ausgang aktiv, 24 V HIGH-Pegel über eingebauten High-Side-Schalter
- Endstufe aktiv, also Endstufe eingeschaltet
- I²T Meldung Motor / Servo
- Sammelwarnmeldung
- Sammelfehlermeldung
- Schleppfehler
- Restwegmeldung
- Ziel erreicht
- Referenzfahrt durchgeführt
- Vergleichsdrehzahl erreicht
- Wegprogramm

Bei einigen Auswahlpunkten erscheint eine Schaltfläche mit drei Punkten hinter der Auswahlbox. Wenn Sie diesen Drücken, wird ein entsprechendes Fenster geöffnet, in dem Sie ergänzende Einstellungen vornehmen können.

8.3.2 Einstellung der Meldungen für die digitalen Ausgänge

Im Zusammenspiel mit einer Steuerung ist es in vielen Applikationen sinnvoll, dass der Servopositionierregler eine Meldung generiert, wenn die vorgesehenen Betriebsbedingungen verletzt oder erreicht werden. Unter dem Menüpunkt **Parameter/Meldungen** erscheint das Fenster für die Einstellungen dieser Meldungen. Hier können die Toleranzbereiche für die Meldungen "Vergleichsdrehzahl erreicht", "Ziel erreicht" und "Schleppfehler" eingestellt werden.

Registerkarte: Schleppfehler

- Schleppfehler:
- Toleranzbereich für den zulässigen Schleppfehler.
- Ansprechverzögerung: Zeitverzögerung, in der sich die Ist-Position außerhalb des Toleranzfensters befinden muss, bevor die Meldung "Schleppfehler" gesetzt wird.

Meldungen							
Drehzahlmeldung Zielposition Schleppfehler							
Schleppfehlergrenzen							
Schleppfehler: <u>+</u> 0,139 U ()	,						
Ansprechverzögerung: 100,0 ms							
· · · · · · · · · · · · · · · · · · ·	•						
OK Abbruch							

Die Schleppfehlermeldung sollte in allen Positionierapplikationen aktiviert werden. Die sinnvolle Größe des Toleranzfensters hängt von vielen Parametern ab, wie Reglerverstärkung im Drehzahl- und Lageregelkreis, Auflösung der Positionserfassung, usw.

Über den Parameter Ansprechverzögerung kann man die "Robustheit" des Systems erhöhen, da nicht jede kurzzeitige Lageabweichung zum ansprechen der Schleppfehlermeldung führt.

Registerkarte: Zielposition

Winkel/Strecke: Toleranzbereich, in der die Meldung "Ziel erreicht" gesetzt wird.

 Ansprechverzögerung: Zeitverzögerung, in der sich die Ist-Position im Toleranzfenster befinden muss, bevor die Meldung "Ziel erreicht" gesetzt wird.

Drehzahlmeldung	Zielpositio	n Schleppfehler	
Toleranzfenster I	für "Ziel erre	eicht"	
Winkel/Streck	e: ±	0,000 U	
Ansprechverzö	igerung:	100,0 ms	100,0 ms
Der Rest	weg wird mit	den Positionen separ	at vereinbart.

Registerkarte: Drehzahlmeldung

Vergleichsdrehzahl:

Drehzahl, bei der die Meldung "Vergleichsdrehzahl erreicht" gesetzt wird.

Meldefenster:

Toleranzbereich, in dem sich die Ist-Drehzahl um die Vergleichsdrehzahl befinden muss, damit die Meldung "Vergleichsdrehzahl erreicht" gesetzt wird.

melaangen	
Drehzahlmeldung Zielposition	Schleppfehler
Drehzahlmeldung	
Vergleichsdrehzahl:	20,000 U/min
Meldefenster:	10,000 U/min
<u> </u>	h

8.4 Inkrementalgeberemulation über DOUT1 und DOUT2

Eine aktivierte Inkrementalgeberemulation benötigt die digitalen Ausgänge DOUT1 und DOUT2. Da diese Ausgänge mit den digitalen Eingängen DIN2 und DIN3 verbunden sind, können diese bei aktivierter Inkrementalgeberemulation nicht genutzt werden.

Ausnahme: DIS-2 48/10-FB, hier sind DOUT1 und DOUT2 separat herausgeführt.

Für komplexe Servosteuerungen lassen sich zwei Servopositionierregler synchronisieren, indem sie im Master – Slave Betrieb über Inkrementalgebersignale miteinander gekoppelt werden. Der

រាំ

Servopositionierregler DIS-2 kann z.Z. nur die Rolle des Masters übernehmen. Der Master gibt die Lageinformation in Form von Inkrementalgeberspursignalen über die Ausgänge DOUT1 (Spursignal A) und DOUT2 (Spursignal B) an den Slave weiter, der sie über den entsprechenden Inkrementalgebereingang einliest. Die untenstehende Abbildung zeigt die Konfiguration:

Abbildung 25: Koppelung Inkrementalgeberemulation

Der Master arbeitet in einer der vorher beschriebenen Betriebsarten (Drehzahlregelung, Positionierung), während der Slave sich im synchronisierten Betrieb befindet.

Mit dieser Konfiguration sind z.B. folgende Applikationen möglich:

- Drehzahlsynchrones Fahren
- Lagesynchrones Fahren
- Fliegende Säge

Auch die klassischen Servoapplikationen, Drehzahlregelung im Servoregler, Lageregelung in der Steuerung, erfordern eine Rückmeldung der Istposition vom Servo an die Steuerung. Hierfür wird ebenfalls die Inkrementalgeberemulation des Servopositionierreglers erwendet.

In beiden Fällen emuliert der DIS-2 als Master die Spursignale des Inkrementalgebers, der durch die Parameter des Menüs <u>Betriebsmodus/Inkrementalgeberemulation</u> beschrieben ist.

Inkrementalgeberemulation		
✓ Inkrementalgeberemulation al	ktivieren	<u>✓ <u>0</u>K</u>
Inkrementalgeber		🗙 Abbru <u>c</u> h
Strichzahl	1024 💌	
Inkremente pro Umdrehung	4096	
Nullimpuls unterdrücken		
🗖 Drehrichtungsumkehr		
Offsetwinkel	0,0 °	

Hier haben Sie auch die Möglichkeit die Inkrementalgeberemulation zu deaktivieren, damit Sie die digitalen Eingänge DIN2 & 3 oder die digitalen Ausgänge DOUT1 & 2 für andere Funktionen nutzen können.

Im Feld Inkrementalgeber können Sie außerdem folgende Einstellungen vornehmen:

- Strichzahl: Es können die Strichzahlen 32, 64, 128, 256, 512 oder 1024 f
 ür die Emulation eingestellt werden.
- * Nullimpuls unterdrücken: Ist der Haken gesetzt, wird kein Nullimpuls ausgegeben.

ฦี

- Drehrichtungsumkehr: Ist der Haken gesetzt, so wird die Drehrichtung der Inkrementalgeberemulation invertiert.
- Offsetwinkel: Hier kann eine Ablage zwischen der Nullstelle vom Geber des Servopositionierregler DIS-2 und dem Emulierten Nullimpuls eingestellt werden.

Die Ausgänge DOUT1 und DOUT2 liefern Signale mit 24 V – Pegel, sog. HTL-Sinale. Gerade ältere und preiswerte Steuerungen können diese Signale direkt verarbeiten. Um die Übertragung hoher Drehzahlen mit hoher Auflösung zu ermöglichen, sollten DOUT1 und DOUT2 mit einem Widerstand von 1 kΩ gegen 0 V beschaltet werden. Bitte kontaktieren sie Ihren Vertriebspartner, wenn Ihre Steuerung keine HTL-Signale, sondern nur RS422-kompatible Spursignale verarbeiten kann. In vielen Fällen kann der DIS-2 auch an diese Eingänge angeschlossen werden, wenn diese eine zusätzliche Beschaltung mit Widerständen erhalten.

8.5 Haltebremse DOUT3

Verfügt Ihr Motor über eine Haltebremse, so kann diese vom Servopositionierregler DIS-2 betriebsgerecht angesteuert werden. Der Servopositionierregler DIS-2 kann nur Haltebremsen schalten, die eine Nennspannung von 24 V DC aufweisen. Die Stromversorgung für die Haltebremse erfolgt im DIS-2 aus der 24 V Logikversorgung, also unabhängig von der Zwischenkreisspannung im Leistungsteil. Der Anschluss erfolgt über den digitalen Ausgang DOUT3 am Steckverbinder X3. Eine genauere Beschreibung, wie die Haltebremse anzuschließen ist und die maximal zulässigen Betriebsströme der Bremse finden Sie in *Kapitel 11.16.4 Anschluss: Haltebremse [X3]* im Anhang.

8.5.1 Bremsfunktionen

Die Haltebremse wird immer freigeschaltet, sobald die Reglerfreigabe eingeschaltet und die Endstufe des Servopositionierreglers aktiviert wird. Haltebremsen weisen Schaltverzögerungen aufgrund der mechanischen Trägheit und aufgrund der elektrischen Zeitkonstanten der Steuerspule auf. Der Servopositionierregler berücksichtigt dies im Betrieb. Es können entsprechende Verzögerungszeiten parametriert werden, wie Abbildung 26 auf der folgenden Seite zeigt.

Um die Parameter für die Ansteuerung der Haltebremse zu bearbeiten, aktivieren Sie das Menü durch **Parameter/Geräteparameter/Bremsfunktionen**. Es erscheint das untenstehende Fenster:

remsfunktionen – Fahrbeginnverzögerung		
Verzögerung bis Bremse gelöst:	40,00 ms ∢	40,00 ms
Abschaltverzögerung Verzögerung bis Bremse fest:	40,00 ms	40,00 ms
Abbru <u>c</u> h		

Die **Fahrbeginnverzögerung t**_F dient dazu, die Ansteuerung der Haltebremse auf deren mechanische Trägheit anzupassen. Bei Reglerfreigabe wird in der Betriebsart Drehzahlregelung und Lageregelung bzw. Positionierung während dieser Verzögerungszeit der Drehzahlsollwert auf Null gesetzt. Dadurch wird der Motor zwar bestromt, der Antrieb verharrt aber mit Haltemoment im Stillstand, bis die Bremse vollständig gelöst ist.

Bei Wegnahme der Reglerfreigabe wird der Drehzahlsollwert auf Null gesetzt. Sobald die Ist-Drehzahl etwa Null ist, schaltet der DIS-2 den Steuerausgang für die Haltebremse aus. Ab diesem Zeitpunkt wird die **Abschaltverzögerung t_A** wirksam. Während dieser Zeit wird der Antrieb auf der aktuellen Position gehalten, bis die Haltebremse tatsächlich eingefallen ist. Nach Ablauf der Verzögerungszeit wird die Reglerfreigabe abgeschaltet. In beiden Fällen wird der mechanische Verschleiß der Haltebremse bremse vermindert.

Abbildung 26: Zeitverhalten Haltebremse

Drehzahlsollwerte oder Startbefehle zur Positionierung werden nach Reglerfreigabe erst nach Ablauf der Fahrbeginnverzögerung wirksam.

In der Betriebsart Drehmomentregelung werden die Drehmomentsollwerte jeweils zum Zeitpunkt der internen Reglerfreigabe aktiv bzw. inaktiv.

8.6 Analogeingänge AIN0 und AIN1

Der Servopositionierregler verfügt über zwei analoge Eingänge für den Eingangsspannungsbereich von \pm 10 V und einer Auflösung von 12 Bit. Diese Eingänge können flexibel für die Vorgabe von Drehzahl- und Drehmomentsollwerten genutzt werden.

Über **Parameter/IOs/Analoge Eingänge** oder die "…" Schaltfläche bei aktiviertem Analogeingang im Menü für die Sollwertselektoren gelangen Sie in folgendes Menü:

N 0 AIN 1			
N D - Skalierung Eine Eingangsspannung vor	+ 10 V entspricht		X Abbruc
Momentensollwert / Momentenbegrenzung:	7,07 A	7,07 A	
Drehzahlsollwert / → Hilfssollwert:	3000,000 U/min	3000,000 U/min	
Offset:	0,00 V	0,00 V	_
sichere Null:	0,00 V	0,00 V	

Hier können Sie einen 'Umrechnungsfaktor' zwischen der Eingangsspannung und dem **Momenten**oder **Drehzahlsollwert** angeben.

Im Feld **Offset** können Sie eine Spannung einstellen, die automatisch auf die am Analogeingang gemessene Spannung aufaddiert wird. Dies kann beispielsweise genutzt werden, um den Offset auf der analogen Steuerspannung einer Steuerung und den Offset des Analogeingangs im Regler zu kompensieren. Dadurch wird das Problem gelöst, dass bei einer extern vorgegebenen Spannung von 0 Volt noch immer ein sehr kleiner Sollwert erzeugt wird.

Eine weitere Anwendung ist die Möglichkeit, bei einer Eingangsspannung von 0..10V positive und negative Sollwerte vorgeben zu können.

Die Funktion **"sichere Null**" begrenzt den ermittelten Sollwert auf Null, wenn er sich innerhalb der in diesem Feld angegebenen Spannung liegt. Dadurch kann man erreichen, dass der Antrieb bei analoger Sollwertvorgabe von 0 V über lange Zeit exakt stehen leibt und nicht langsam wegdriftet.

Abbildung 27: Sichere Null

In Applikationen mit Lageregelung (intern oder über die externe Steuerung) darf die Funktion "sichere Null" nicht aktiviert werden, da sie regeltechnisch wie ein Totbereich bzw. eine "Lose" in der Regelstrecke wirkt – siehe Abbildung 27. Dies führt im Betrieb zu einer Verschlechterung der Stabilität im Regelkreis.

In diesem Menü gibt es getrennte Registerkarten für die beiden Analogeingänge, so dass Sie in der Lage sind, diese unabhängig voneinander zu Skalieren.

8.7 Analogausgang AMON

ົງໃ

Der Servopositionierregler DIS-2 besitzt einen analogen Ausgang für die Ausgabe und die Anzeige von internen Regelgrößen, die mit einem externen Oszilloskop dargestellt werden können. Die Ausgangsspannung liegt im Bereich von 0 V bis +10 V. Die Auflösung beträgt 8 Bit.

Um den Analogmonitor zu konfigurieren, ist der Menüpunkt **Parameter/<u>I</u>Os/Analoge Ausgänge** zu wählen.

Analogmonitor	Skalierung	
O Drenzani - Soliwert	10 Volt entsprechen:	15,000 A
C Drehashi Istweet (ronj		
Drenzani - Istwert (Meter EMK)		
C Less Collwort		
C Lage Jatwort	Frei wählbares Kommunikationsobjekt	
C Lage - Istwert		
C Wirkstrom - Sonwert	Objektriummer.	80 (nex)
C Dindstrom Collwort		- +
C Blindstrom Jatwort		
Bhrustioni - Istweit Bhasenstrom II	Offset	
C Phasenstrom V		F 00.11
C Rotorlage	Offset:	5,00 ¥
C Fester Spannungswert	L	
Erei wählbares Kommunikationsobiekt	Numerische Überlau	fhearenzuna
		logionzang

Hier steht eine Reihe von Werten zur Verfügung. Wählen Sie die entsprechende Größe, die über den Analogmonitor ausgegeben werden soll.

Die Skalierung stellen Sie bitte im Feld **Skalierung** ein. Die Einheiten werden beim Wechsel der anzuzeigenden Größe automatisch angepasst.

Im Feld **Offset** können Sie eine Offsetspannung einstellen um z.B. positive und negative Werte darstellen zu können.

Ist die Box **Numerische Überlaufbegrenzung** angeklickt, werden rechnerische Werte, die über +10 und unter 0 V liegen, auf diese Grenzen beschränkt. Bei einer nicht aktivierten Box werden Überschreitungen des +10V-Wertes als Spannungen ab 0V dargestellt, und umgekehrt.

j

Die Option Frei wählbares Kommunikationsobjekt ist für Sonderapplikationen reserviert. Es können auch andere interne Größen des Reglers zu Analysezwecken ausgegeben und überprüft werden.

9 Kommunikationsschnittstellen

9.1 Steuerung über den CAN-Bus

9.1.1 Funktionsübersicht

Der Servopositionierregler DIS-2 arbeitet mit dem CANopen Protokoll nach DS301 / DS402.

Dabei werden folgende in CANopen spezifizierten Betriebsarten unterstützt:

- Momentengeregelter Betrieb profile torque mode
- Drehzahlgeregelter Betrieb profile velocity mode
- Referenzfahrt homing mode
- Positionierbetrieb profile position mode
- Synchrone Positionsvorgabe interpolated position mode

Für den Austausch der Daten werden die folgenden Zugriffsarten unterstützt:

SDO	Service Data Object	Werden zur normalen Parametrierung des Reglers verwendet. (Es werden ca. 150 SDOs unterstützt)
PDO	Process Data Object	Schneller Austausch von Prozessdaten (z.B. Istdrehzahl) möglich. (Es werden 2 PDOs unterstützt)
SYNC	Sync hronization Message	Synchronisierung mehrerer CAN-Knoten.
EMCY	Em ergen cy Message	Übermittlung von Fehlermeldungen.
NMT	Network Managemen t	Netzwerkdienst: Es kann z.B. auf alle CAN- Knoten gleichzeitig eingewirkt werden.
HEARTBEAT	Error Control Protocol	Überwachung der Kommunikationsteilnehmer durch regelmäßige Nachrichten.

9.1.2 Verarbeitung der CAN-Nachrichten

Der DIS-2 besitzt einen Kommandointerpreter für die empfangenen CAN-Nachrichten. Dieser Kommandointerpreter wird alle **1,6 ms** aufgerufen. Er ist in der Lage, bei jedem Aufruf ein SDO oder eine Sonder-Nachricht, wie z.B. ein SYNC-Telegramm oder eine Emergency Message, zu verarbeiten. Die Verarbeitung von PDOs kann je nach Komplexität sogar zwei Zeitscheiben des Kommandointerpreters beanspruchen. Durch diese Struktur ergeben sich einige Restriktionen in der Geschwindigkeit, mit der der DIS-2 die CAN-Objekte verarbeiten kann:

 Die Steuerung darf PDOs nicht häufiger als alle 4 ms senden, sonst besteht die Gefahr, das der DIS-2 ein PDO nicht registriert, bzw. auswertet. Dies kann zum Beispiel zu Sprüngen in der Regelung oder zu einem Rucken des Motor führen.

- Im Worst Case wird ein PDO erst nach 4,8 ms im Regler wirksam (z.B. als Drehzahlsollwert). Dieser Fall tritt auf, wenn zwei Zeitscheiben für die Verarbeitung benötigt werden und das PDO unmittelbar nach dem vorhergehenden Aufruf des Kommandointerpreters von der Steuerung gesendet wird.
- Zwischen dem Senden eines SDOs und der Antwort des Reglers können bis zu **8 ms** vergehen, weil die Antwortdaten im Regler erst zusammengestellt werden müssen.

Nähere Informationen zur Kommunikation und Steuerung des Servopositionierreglers DIS.2 über die CAN-Open Schnittstelle, sowie Hinweise zu der Verdrahtung des CAN Busses können Sie im **CANopen Handbuch** für den Servopositionierregler DIS-2 nachlesen.

9.1.3 Einstellung der CANopen Kommunikationsparameter

Unter dem Menü **<u>Parameter/Feldbus/C</u>ANopen** können Sie die CANopen Kommunikationsparameter des Servopositionierreglers DIS-2 auf Ihr CAN Bus Netzwerk anpassen.

CANopen		
CANopen aktiv		
Baudrate	Knotennummer	
125 kBaud	Basisknotennummer:	1
C 250 kBaud	+ Offset (inaktiv):	0
O 500 kBaud	Effektive Knotennummer:	0
······		
<u><u> </u></u>	X Abbru <u>c</u> h	

Sie können folgende Kommunikationsparameter festlegen:

- **Baudrate**: Dieser Parameter bestimmt die auf dem CANopen Bus verwendete Baudrate.
- Basisknotennummer: Dieser Parameter beinhaltet die "Basisknotennummer" des entsprechenden Gerätes, die zur Berechnung der letztendlichen "effektiven" Knotennummer benutzt wird. Es ist möglich, dass in die Berechnung der effektiven Knotennummer zusätzlich die digitalen Eingänge einbezogen werden (siehe unten).

Auf dieser Knotennummer basieren die Identifier der einzelnen Nachrichten. Jede Knotennummer darf in einem CANopen Netzwerk nur einmal vergeben werden.

Addition von DIN0...DIN3 zur Knotennummer: Zur Basis-Knotennummer wird der Wert der digitalen Eingänge DIN0..DIN3 addiert. Die Eingangskombination wird nur beim Aktivieren der CANopen Schnittstelle oder direkt nach dem RESET am Servopositionierregler DIS-2 ausgelesen.

Somit können durch einfache Brücken nach 24V an den digitalen Eingängen bis zu 16 verschiedene Gerätenummer vergeben werden.

Um diese Funktion nutzen zu können, müssen Sie allerdings die digitalen Eingänge entsprechend parametriert haben (siehe *Kapitel 8.1.1 Einstellung der digitalen Eingänge*). Wenn Sie auf die "…" Schaltfläche klicken, gelangen Sie in das Menü für die Einstellung der digitalen Eingänge.

Im Feld **Effektive Knotennummer** wird die aus Basisknotennummer und Offset resultierende Knotennummer angezeigt.

Über das Kontrollkästchen **CANopen aktiv** kann die Feldbuskommunikation mit den eingestellten Parameter ein- bzw. ausgeschaltet werden. Diese Einstellung wird sofort übernommen, d.h. es ist kein Reset notwendig um die CAN-Open Schnittstelle zu aktivieren bzw. zu deaktivieren.

9.2 Steuerung über die serielle Schnittstelle

9.2.1 Funktionsübersicht

Der Servopositionierregler DIS-2 verfügt über eine asynchrone serielle Schnittstelle, die in den meisten Fällen zur Parametrierung des Servopositionierregler verwendet wird.

Die Schnittstelle kann aber auch verwendet werden, um den Regler in der Applikation zu steuern wenn keine besonders hohen Anforderungen an die Reaktionszeit des Antriebs bestehen.

Die Kommunikation erfolgt dabei über sogenannte Kommunikationsobjekte. Es gibt Kommunikationsobjekte über die die Zustandsgrößen wie z.B. der Strom oder die Drehzahl ausgelesen werden. Über andere Kommunikationsobjekte werden Parameter gelesen und beschrieben.

Ein Kommunikationsobjekt besteht daher aus den folgenden Werten:

- Zulässiger minimaler Einstellwert
- Zulässiger maximaler Einstellwert
- Eingestellter Wert des Parameters
- Reglerinterner Wert des Parameters

Informationen zur Befehls-Syntax finden Sie in *Kapitel 11.6 Serielles Kommunikations*protokoll, Kapitel 11.7 Verzeichnis der Kommunikationsobjekte enthält eine Liste aller unterstützten Kommunikationsobjekte.

Der Reglerinterne Wert eines Parameters kann u.U. geringfügig vom eingestellten Wert abweichen, da der Servopositionierregler intern andere Einheiten und Normierungen verwendet als die Kommunikationsobjekte.

9.2.2 Serielle Kommunikation über den DIS-2 ServoCommander[™]

Das Parametrierprogramm kommuniziert mit dem Servopositionierregler DIS-2 über die serielle Schnittstelle.

Im Auslieferungszustand geht das Parametrierprogramm von folgenden Daten aus:

- Schnittstelle COM1
- Übertragungsgeschwindigkeit 9600 Baud (Werkseinstellung der Servopositionierregler)

* 8 Datenbits, 1 Stopbit, keine Paritätsüberprüfung. Diese Einstellungen sind fest!

Dazu wird ein bestimmtes Protokoll verwandt, in dem die einzelnen Befehle festgelegt sind. Eine Auflistung dieser Befehle finden Sie in *Kapitel 11.6 Serielles Kommunikationsprotokoll*.

Beim Programmstart versucht das Programm, eine Kommunikation zu einem Servopositionierregler herzustellen. Falls dies fehlschlägt, erscheint eine Fehlermeldung. In diesem Fall müssen Sie die Daten für die Kommunikation korrekt einzustellen. Hierfür werden die Informationen, welche **serielle Schnittstelle** (COM-Port-Nummer) und welche **Übertragungsgeschwindigkeit** genutzt wird, benötigt.

9.2.3 Einstellung der RS232 Kommunikationsparameter

Im Menü <u>Optionen/Kommunikation/Baudrate</u> kann die Baudrate ausgehend von der aktuellen Übertragungsgeschwindigkeit erhöht werden:

Baudrate	
Aktuelle Übertragungsgeschwindigkeit:	115200 Baud
Bevorzugte Übertragungsgeschwindigkeit:	115200 Baud 💌
	9600 Baud 19200 Baud
✓ <u>O</u> K X Abbru <u>c</u> h	38400 Baud 57600 Baud 115200 Baud

Dazu wird eine **Bevorzugte Übertragungsgeschwindigkeit** ausgewählt. Das Programm versucht mit der vorgegebenen Baudrate eine Kommunikation aufzubauen, woraufhin die bevorzugte Übertragungsgeschwindigkeit akzeptiert oder auf eine niedrigere Baudrate zurückgeschaltet wird. Die realisierte Baudrate wird als **Aktuelle Übertragungsgeschwindigkeit** angezeigt.

Diese Baudrate gilt für die "normale" Online-Kommunikation mit dem Servopositionierregler. Für den Firmware-Download wird eine spezielle Baudratenauswahl vorgenommen.

Im Menü **Optionen/Kommunikation/Schnittstelle** kann die Schnittstelle (COM-Port) ausgewählt werden, über die das Parametrierprogramm versuchen soll mit dem Servopositionierregler zu kommunizieren:

Schnittstelle	
Bisher aktiver COM-Port:	COM1:
Neuer COM-Port:	COM1:
<u>✓ <u>0</u>K</u>	

9.2.4 Transfer Fenster

Das Transfer-Fenster erlaubt es, Befehle direkt an den Servopositionierregler DIS-2 zu senden und die Antwort zu beobachten.

Das Transfer Fenster wird aktiviert durch den Menübefehl **Datei/Transfer**.

Das Transfer Fenster dient i.a. nur zum Absetzen von Befehlen, die für den Normalbetrieb ohne Interesse sind. Weiterhin können Speicherstellen bzw. Kommunikationsobjekte gelesen und geschrieben werden. Auch dies ist nur in Spezialfällen notwendig.

Acht	tung: dieses Fenster sperr	
- Condon	OR:0012	-
- <u>s</u> enden		
Empfangen	> 0B:0012	<u></u>
	> 0012:0001AE43	
		-
		▶
	0.17.0	1
	SchlieBen	

Um einen Befehl zu senden Geben Sie diesen bitte in die obere Eingabezeile ein und drücken Sie <ENTER> oder auf die Schaltfläche **Senden**.

9.2.5 Kommunikationsfenster für RS232 Übertragung

Der Aufruf des Menüpunktes <u>Optionen/Kommunikation/Kommunikationsfenster</u> (RS232) anzeigen erzeugt ein Fenster, in dem die Kommunikation über die serielle Schnittstelle beobachtet werden kann. Dies dient hauptsächlich Debugzwecken, für den 'Normalbenutzer' ist diese Option nicht interessant.

R5232	
>or:0036	
<0036:00000000 = 0	
KUUEU:UUUUUUUU = U Nor0070	
20070-0000000 - 0	
Sor 0.00000000 = 0	
<0070:00000000 = 0	
>or:0030	
<0030:00000008 = 8	
>or:00C0	
<00C0:FFFFF5C3 = -2621	
>or:0071	
<pre>\cup1:0000000 = 0</pre>	
20032-01003200 - 16919699	
Nor0036	
<0036:00000000 = 0	
>or:00C0	
<0000:0000000 = 0	
>or:0070	
<0070:00000000 = 0	
>or:0085	_
J	-
X Abbruch	

9.3 Steuerung über das Technologieinterface

Der Servopositionierregler DIS-2 verfügt über ein Technologieinterface, welches u.A. mit einer synchron seriellen Schnittstelle ausgestattet ist.

Dadurch ist es möglich Kundenspezifische Erweiterungsmodule / Kommunikationsinterfaces einzubinden.

Bei Bedarf wenden Sie sich bitte an Ihren Vertriebspartner.

10 Fehlermeldungen/Störungstabelle

10.1 Fehlerüberwachungen im DIS-2

Der Servopositionierregler DIS-2 besitzt eine umfangreiche Sensorik, die die Überwachung der einwandfreien Funktion von Controllerteil, Leistungsendstufe, Motor und Kommunikation mit der Außenwelt übernimmt. Alle auftretenden Fehler werden in dem internen Fehlerspeicher gespeichert. Die wesentlichen Überwachungsfunktionen sind in den nachfolgenden Unterkapiteln kurz beschrieben.

Über ein komfortables Fehlermanagement ist es möglich die Reaktion auf die Fehler anzupassen (siehe *Kapitel 10.4 Fehlermanagement*).

10.1.1 Überstrom- und Kurzschlussüberwachung

- Überstrom- und Kurzschlussüberwachung: Die Überstrom- und Kurzschlussüberwachung spricht an, sobald der Strom im Zwischenkreis den zweifachen Maximalstrom des Reglers überschreitet. Sie erkennt Kurzschlüsse zwischen zwei Motorphasen sowie Kurzschlüsse an den Motorausgangsklemmen gegen das positive Bezugspotential des Zwischenkreises. Wenn die Fehlerüberwachung einen Überstrom erkennt, erfolgt die sofortige Abschaltung der Leistungsendstufe, so dass Kurzschlussfestigkeit gewährleistet ist.
- IPT Stromüberwachung mit Warnung für den Regler: Der Servopositionierregler DIS-2 verfügt über eine IPt-Überwachung zur Begrenzung der mittleren Verlustleistung in der Leistungsendstufe. Da die auftretende Verlustleistung in der Leistungselektronik und im Motor im ungünstigsten Fall quadratisch mit dem fließenden Strom wächst, wird der quadrierte Stromwert als Maß für die Verlustleistung angenommen. Bei erreichen von 80% des maximalen Integralwertes wird eine Warnung (parametrierbar) ausgelöst. Bei erreichen der 100% wird der Maximalstrom auf den Nennstrom begrenzt.
- Prüfung Strommessung und Offsetabgleich bei Einschalten der Endstufe: Beim Einschalten der Endstufe wird ein automatischer Offsetabgleich der Strommessung durchgeführt. Liegt dieser außerhalb zulässiger Toleranzen, so wird ein Fehler erzeugt.

10.1.2 Überwachung Zwischenkreisspannung

- Überspannungsüberwachung: Die Überspannungsüberwachung für den Zwischenkreis spricht an, sobald die Zwischenkreisspannung den Betriebsspannungsbereich überschreitet. Die Leistungsendstufe wird daraufhin abgeschaltet.
- Unterspannungsüberwachung: Die Zwischenkreisspannung wird auf eine untere Schwelle hin überwacht (siehe Kapitel 4.3.5 Zwischenkreisüberwachung). Die Reaktion auf diesen Feh-

ler ist für Applikationen die ein "Leerfahren" des Zwischenkreises oder einen Einrichtbetrieb mit reduzierter Zwischenkreisspannung erfordern, parametrierbar.

10.1.3 Überwachung der Logikversorgung

- 24V Über- / Unterspannungsüberwachung: Die Versorgung des Logikteils des Servopositionierreglers DIS-2 wird überwacht. Bei einer zu hohen und einer zu niedrigen Logikversorgung wird eine Fehlermeldung ausgelöst.
- Interne Betriebsspannungen: Alle intern erzeigten Betriebsspannungen wie z.B. die 3,3 V Versorgung für den Prozessor werden überwacht.

10.1.4 Überwachung der Kühlkörpertemperatur

- Temperaturderating: Der zulässige Maximalstrom wird bei hohen Temperaturen reduziert um eine hohe Lebensdauer des Servopositionierreglers zu gewährleisten.
- Abschaltung bei Übertemperatur: Die Kühlkörpertemperatur der Leistungsendstufe wird mit einem linearen Temperatursensor gemessen. Beim Erreichen der Temperaturgrenze gemäß Anhang Kapitel 11.14.1 Umgebungsbedingungen und Qualifikation wird eine Fehlermeldung ausgelöst. Zusätzlich wird ca. 5°C unterhalb des Grenzwertes eine Temperaturwarnung ausgelöst.

10.1.5 Überwachung des Motors

- Überwachung des Drehgebers: Ein Fehler des Drehgebers führt zur Abschaltung der Leistungsendstufe. Beim Resolver wird z.B. das Spursignal überwacht. Bei Inkrementalgebern werden die Kommutierungssignale geprüft. Andere "intelligente" Geber haben weitere Fehlererkennungen.
- Messung und Überwachung der Motortemperatur: der Servopositionierregler DIS-2 besitzt einen analogen Eingang zur Erfassung und Überwachung der Motortemperatur. Durch die analoge Signalerfassung werden auch nichtlineare Sensoren unterstützt. Die Abschalttemperatur ist parametrierbar. Alternativ ist auch die Überwachung der Motortemperatur mittels Öffnerkontakt oder PTC möglich. In diesem Fall kann die Abschaltschwelle allerdings nicht parametriert werden.
- I²T Stromüberwachung mit Warnung für den Motor: Der Servopositionierregler DIS-2 verfügt ebenfalls über eine I²t-Überwachung zur Begrenzung der mittleren Verlustleistung im Motor. Da die auftretende Verlustleistung in der Leistungselektronik und im Motor im ungünstigsten Fall quadratisch mit dem fließenden Strom wächst, wird der quadrierte Stromwert als Maß für die Verlustleistung angenommen. Bei erreichen von 80% des maximalen Integralwertes wird eine Warnung (parametrierbar) ausgelöst. Bei erreichen der 100% wird der Maximalstrom auf den Nennstrom begrenzt.
- Überwachung der automatischen Motor-Identifikation: Überwachung auf eine erfolgreiche Durchführung der automatischen Identifikation der Phasenfolge, der Polpaarzahl und des Winkelgeberoffsets.

10.1.6 Überwachung des Bewegungsablaufs

Schleppfehler: Die Abweichung zwischen Soll- und Ist-Position wird überwacht.

- Positionierbereich: Eine laufende Positionierung wird auf einen einstellbaren Positionierbereich hin überwacht.
- * Endschalter: Sind beide Endschalter gleichzeitig aktiv, so wird ein Fehler erzeugt.
- Wegprogramm: Das Wegprogramm wird bei der Bearbeitung auf ung
 ültige Befehle hin überwacht.

10.1.7 Weitere interne Überwachungsfunktionen

- Speichertest / Checksummen: Der interne FLASH Speicher (Programm- und Datenflash) wird mit Hilfe einer Checksummenberechnung sowie der Stack des Prozessors überwacht.
- * Betriebsart: Je nach Betriebsart werden spezifische Überwachungsfunktionen aktiviert.
- Kommunikation: Die Kommunikation über die serielle Schnittstelle sowie über den Feldbus (CAN-Open) wird überwacht.

10.1.8 Betriebsstundenzähler

Der Servopositionierregler DIS-2 verfügt über einen Betriebsstundenzähler. Er wird über die Parametriersoftware DIS-2 ServoCommander[™] im Menü **Info/Info** auf der Registerkarte **Zeiten** angezeigt.

Der aktuelle Stand des Betriebssundenzählers wird einmal in der Minute im internen Flash gesichert. Dadurch kann es zu Abweichungen nach einem Reset oder dem Wiedereinschalten von bis zu 60 Sekunden kommen.

10.2 Fehlerübersicht

Die nachfolgende Tabelle gibt eine Übersicht über alle Fehler die auftreten können.

In der Spalte **Reaktion** finden Sie die Reaktionsmöglichkeiten, die Sie als Anwender parametrieren können, mit einem "**X**" bezeichnet.

Die Parametrierung der Fehlermöglichkeiten ist in Kapitel 10.4 Fehlermanagement beschrieben.!

Die Abkürzungen K, F und W haben dabei folgende Bedeutung:

- Kritischer Fehler: Ein geregelter Betrieb des Motors kann nicht gewährleistet werden.
 Die Endstufe wird sofort abgeschaltet; Der Motor trudelt aus.
- Fehler: Der Motor wird an der Sicherheitsrampe abgebremst.
 Danach wird die Endstufe abgeschaltet.
- Warnung: Der Betrieb des Motors ist weiterhin, bzw. noch f
 ür begrenzte Zeit m
 öglich. Es ist parametrierbar, ob Warnungen angezeigt werden:
 - > Anzeigen: Die Störung wird angezeigt, ansonsten keine weiteren Maßnahmen.

> Nicht anzeigen: Die Störung wird komplett ignoriert.

Tabelle 16: Fehlerübersicht

Fehler	CAN Fehler- code	Bedeutung	Mögliche Ursache / Maßnahmen	Auslöse- zeit	Reaktion		
Nr.					κ	F	w
			Konfiguration der Temperaturüberwachung überprüfen.	< 100ms	Х	Х	Х
		Übertemperatur	Temperatursensor korrekt verdrahtet ?				
3	4310	im Motor	Mechanik schwergängig, Motor zu heiß?				
			Temperatur der Leistungselektronik < -40°C oder > 85°C.	< 100ms	X	Х	
		Untertemperatur /	Aufheizung des DIS-2 durch den Motor ? Ggf. DIS-2 thermisch entkoppeln				
4	4210	Ubertemperatur der Elektronik	Anbau und Kühlungsverhältnisse überprü- fen / verbessern				
			Winkelgeber angeschlossen ?	< 5ms	Χ		
			Winkelgeberkabel defekt ?				
			Winkelgeber defekt ?				
5	7392	Fehler SINCOS Versorgung	Konfiguration des Winkelgeberinterface überprüfen				
			Winkelgeber angeschlossen?	< 5ms	Х		
			Winkelgeberkabel defekt?				
			Winkelgeber defekt?				
		Fehler SINCOS-	Konfiguration Winkelgeberinterface prüfen				
6	7391	RS485- Kommunikation	Neuer, oder unbekannter SINCOS-Geber verwendet ?				
			Winkelgeber angeschlossen?	< 5ms	х		
			Winkelgeberkabel defekt?				
		Febler SINCOS	Winkelgeber defekt?				
7	7390	Spursignale	Konfiguration Winkelgeberinterface prüfen				
			Resolver angeschlossen?	< 5ms	Χ		
		Fabler Beachter	Winkelgeberkabel defekt?				
		Spursignale oder	Winkelgeber defekt?				
8	7380	Trägerausfall	Konfiguration Winkelgeberinterface prüfen				
			Fehler kann in Folge eines defekten Win- kelgebers / defekter Hallsensoren oder eines Verdrahtungsfehlers von X2 auftre- ten	< 5ms	X		
			Möglicher Fehler auf Techno-Modul X8				
		Fehler 5V-	Elektronikfehler im Gerät DIS-2, kann nicht selbst behoben werden.				
9	5113	Elektronik- versorgung	Servopositionierregler zum Vertriebspart- ner einschicken.				
			Fehler kann in Folge eines defekten Win- kelgebers / SINCOS-Gebers oder eines Verdrahtungsfehlers von X2 auftreten !	< 5ms	X		
10	5114	Fehler 12V- Elektronik- versorgung	Elektronikfehler im Gerät DIS-2, kann nicht selbst behoben werden. Servopositionierregler zum Vertriebspart- ner einschicken.				
Fehler	CAN	Bedeutung	Mögliche Ursache / Maßnahmen	Auslöse-	Reaktion		on
--------	-----------------	---	--	----------	----------	---	----
Nr.	Fehler- code			zeit	К	F	w
			24 V Logikversorgung zu hoch oder zu niedrig ?	< 5ms	Х		
			24 V Logikversorgung nicht belastbar, z.B. beim Schalten der Haltebremse ?				
			Fehler in der Haltebremse oder der Ver- drahtung zu X3 oder Überlastung des Bremsausgangs durch eine Bremse mit zu hoher Stromaufnahme.				
11	5112	Fehler 24 V- Logikversorgung	Elektronikfehler im Gerät DIS-2, kann nicht selbst behoben werden. Servopositionierregler zum Vertriebspart- ner einschicken.				
			Fehler kann nicht selbst behoben werden.	< 5ms	Х		
13	5210	Fehler Offset Strommessung	Servopositionierregler zum Vertriebspart- ner einschicken.				
			Motor defekt, z.B. Wicklung überlastet und verschmort, Schluss zwischen Wicklung und Gehäuse?	< 10µs	X		
			Kurzschluss im Kabel zwischen zwei Pha- sen oder zwischen Phase und Schirm?				
		Überstrom	Isolation der Motorphasenanschlüsse?				
14	2320	Zwischenkreis / Endstufe	Defekt im DIS-2 (Endstufe defekt oder Isolationsfehler – Isolierfolie)				
			ZK-Versorgung zu niedrig ?	< 1ms	Х	Х	Х
			ZK-Versorgung nicht ausreichend belast- bar, z.B. beim Beschleunigen mit vollem Strom ?				
15	3220	Unterspannung Zwischenkreis	Konfiguration Zwischenkreisüberwachung prüfen, ggf. auf ca. 50% bis 70% der Nennspannung einstellen.				
			Zwischenkreisspannung > 70V.	< 1ms	Х		
			ZK-Versorgung im Leerlauf zu hoch?				
			Auslegung prüfen.				
			Zu hohe Bremsenergie beim Abbremsen der Achsen				
16	3210	Überspannung Zwischenkreis	Zu geringe Kapazität im Zwischenkreis, Zusatzkondensator installieren (ca. 10 000 uF / je 10 A Motorstrom)				
			Winkelgeber angeschlossen?	< 5ms	Χ		
			Winkelgeberkabel defekt?				
			Winkelgeber defekt?				
17	7385	Fehler Hallgeber	Konfiguration Winkelgeberinterface prüfen				
			Winkelgeber, Polpaarzahl und Richtungs- sinn korrekt eingestellt - Automatische Motoridentifikation durchgeführt ?	< 100ms	X	Х	X
			Motor blockiert?				
19	2312	l ² t-Fehler Motor (l ² t bei 100%)	Dimensionierung des Antriebspaketes im Hinblick auf Leistung überprüfen.				
20	2311	l ² t-Fehler Regler (l ² t bei 100%)	Siehe Fehler 19	< 100ms	X	Х	X

Fehler	CAN	CAN Bedeutung Mögliche Ursache / Maßnahmen		Auslöse-	Reaktion		
Nr.	Fehler- code			zeit	К	F	w
			Motor blockiert ?	< 100ms	Х	Х	Х
26	2380	l ² t bei 80%	Leistungsdimensionierung Antriebspaket prüfen.				
		Temperatur	Dimensionierung des Antriebspaketes im	< 100ms	Х	Х	Χ
27	4380	unter Maximum	HINDIICK auf Leistung überprüfen.				
			Dimensionierung des Antriebspaketes im Hinblick auf Leistung überprüfen.	< 100ms	Х	Χ	X
		Temperatur	Aufheizung des DIS-2 durch den Motor ? Ggf. DIS-2 thermisch entkoppeln				
28	4280	Endstufe 5°C unter Maximum	Anbau und Kühlungsverhältnisse überprü- fen / verbessern				
			Motor blockiert ?	< 5ms	Х	Х	X
			Regler optimal eingestellt, insbesondere die inneren Regelkreise für den Strom und die Drehzahl ?				
			Beschleunigung zu groß parametriert?				
29	8611	Schleppfehler Überwachung	Fehlerfenster zu gering eingestellt - ver- größern				
			Endschalter korrekt verdrahtet ?	< 1ms	Χ	Χ	Χ
		Fehler	Endschalter defekt ?				
31	8612	Endschalter	Konfiguration der Endschalter prüfen.				
			Winkelgeberfehler aufgetreten ?	< 5ms	Х		
		Time Out bei	Motoridentifikation nicht erfolgreich durch- geführt?				
35	6199	Schnellhalt	Beschleunigung zu groß parametriert?				
			Referenzfahrt konnte nicht erfolgreich beendet werden.	< 5ms	X	X	X
			Konfiguration der Referenzfahrt überprü- fen.				
36	8A80	Fehler Referenzfahrt	Parametrierung der Regler inkl. Winkelge- bereinstellung OK ?				
			Winkelgeber angeschlossen ?	< 5ms	Х		
		Fehler: Motor-	Winkelgeberkabel defekt ?				
		und Winkelgeber-	Winkelgeber defekt ?				
40	6197	Identifikation	Konfiguration Winkelgeberinterface prüfen				
43	6193	Wegprogramm: unbekannter Befehl	Bitte nehmen Sie Kontakt zum technischen Support auf.	< 5ms	X	X	
			Die digitalen Eingänge für START1 & START2 sind gleichzeitig gesetzt.	< 5ms	X	X	
44	6192	Wegprogramm: ungültiges Sprungziel	Es soll ein unzulässiges Sprungziel / eine unzulässige Zielposition angesprochen werden.				
			Kommunikation ist gestört: Installation un- ter EMV Gesichtspunkten überprüfen.	< 5ms	X	X	X
			Einstellung der Baudrate prüfen				
55	8100	Fehler CAN- Kommunikation	Einstellung der Knotennummer prüfen – Knoten doppelt im Netz vorhanden ?				

Fehler	CAN	Bedeutung	Mögliche Ursache / Maßnahmen	Auslöse-	Reaktion		on
Nr.	Fehler- code			zeit	K	F	w
56	7510	Fehler RS232- Kommunikation	Kommunikation ist gestört: Installation un- ter EMV Gesichtspunkten überprüfen.	< 5ms	X	X	X
			Konflikt zwischen Beschleunigung und eingestellter Fahrgeschwindigkeit.	< 5ms	X		
57	6191	Fehler Positions- datensatz	Bitte nehmen Sie Kontakt zum technischen Support auf.				
58	6380	Fehlerhafte Betriebsart	Wechsel der Betriebsart bei eingeschalte- ter Endstufe.	< 5ms	X	X	X
		Fehler in der	Interner Fehler.	< 5ms	Х		
60	6190	Vorberechnung Positionierung	Bitte nehmen Sie Kontakt zum technischen Support auf.				
			Interner Fehler.	< 5ms	Χ		
62	6180	Stack-Overflow	Bitte nehmen Sie Kontakt zum technischen Support auf.				
			Interner Fehler.	< 5ms	Χ		
63	5581	Checksummen- fehler	Bitte nehmen Sie Kontakt zum technischen Support auf.				
			Interner Fehler.	< 5ms	Χ		
64	6187	Initialisierungs- fehler	Bitte nehmen Sie Kontakt zum technischen Support auf.				

Der Servopositionierregler verwaltet intern die Fehler von Nr. 1 bis Fehler Nr. 64.

Falls Ihr Gerät eine Fehlernummer anzeigt, die in der Störungstabelle nicht beschrieben ist und im Kapitel *10.4 Fehlermanagement* als "Unbekannter Fehler" ausgewiesen wird, kontaktieren Sie bitte Ihren Vertriebspartner.

Es besteht die Möglichkeit, dass diese Fehlernummern im Zuge von Firmwareerweiterungen oder kundenspezifischen Firmwareversionen mit zusätzlichen Überwachungsfunktionen vergeben werden.

႞

10.3 Fehleranzeige im DIS-2 ServoCommander[™]

Das **Fehlerfenster** ist ein permanentes Fenster des Parametrierprogramms. Wenn kein Fehler vorhanden ist, befindet sich das Fenster im minimierten Zustand.

Sobald ein Reglerfehler auftaucht, finden zwei Veränderungen in der Oberfläche statt:

- 1. Das Fehlerfenster vergrößert sich und tritt an die Oberfläche.
- 2. In der unteren Leiste des Hauptfensters wird mit roter Schrift der Fehler angezeigt.

Fehlermeldungen Fehlertext 08: Fehler Resolverspursignale / Trägerausfall	Löschen X Abbruch
Err.: 08: Fehler Resolverspursignale / Trägerausfall 16:	50:09

Die Fehlerbehandlung erfolgt in drei Schritten:

- 1. **Fehleranalyse:** In diesem Beispiel wird der Fehler z.B. durch eine gebrochene/nicht gesteckte Verbindung zum Winkelgeber hervorgerufen.
- 2. **Fehlerbehebung:** Beheben Sie die Ursache des Fehlers. (In diesem Beispiel ist die korrekte Verbindung zum Winkelgeber herzustellen.)
- Fehlerquittierung: Klicken Sie auf die Schaltfläche <u>Löschen</u> im Fehlerfenster. Falls der Fehler erfolgreich behoben werden konnte, minimiert sich das Fenster. Falls der Fehler noch immer besteht, wird es wieder aufgebaut.

Durch Klick auf die Schaltfläche **Abbruch** kann das Fenster minimiert werden. Eventuell vorhandene Fehlermeldungen bleiben im Fehlerfenster der Statusleiste bestehen.

10.4 Fehlermanagement

Das Fehlermanagementfenster und das Fehlerfenster sind sowohl für Fehlermeldungen als auch für Warnungen zuständig.

Fehlerm	nanagement			
116	1732 3348	4964		
		-Fehler: End	stufe sofort abschalten	√ <u>ο</u> κ
		-Fehler: Ges	teuerte Abschaltung	
		— <mark>₩arnung:</mark> ₩	Varnung anzeigen	Abbru <u>c</u> h X
		— Warnung: V	Varnung nicht anzeigen	
•	0 0 0 🗖	Nr. 1:	Unbekannter Fehler	
•	0 0 0 📕	Nr. 2:	Unbekannter Fehler	
۲	000 🗖	Nr. 3:	Übertemperatur Motor	
0	• • • 🗖	Nr. 4:	Unter-/Übertemperatur Leistungselektronik	
•	000 🗖	Nr. 5:	Fehler SINCOS-Versorgung	
•	000 🗖	Nr. 6:	Fehler SINCOS-RS485-Kommunikation	
•	000 🗖	Nr. 7:	Fehler SINCOS-Spursignale	
•	000 💻	Nr. 8:	Fehler Resolverspursignale / Trägerausfall	
•	000 🗖	Nr. 9:	Fehler 5V-Elektronikversorgung	
•	000 🗖	Nr. 10:	Fehler 12V-Elektronikversorgung	
•	000 🗖	Nr. 11:	Fehler 24V-Versorgung (out of range)	
	000 🗖	Nr. 12:	Unbekannter Fehler	
•	000 🗖	Nr. 13:	Fehler Offset Strommessung	
	000	Nr. 14:	Überstrom Zwischenkreis / Endstufe	
0	000	Nr. 15:	Unterspannung Zwischenkreis	
۲	000	Nr. 16:	Überspannung Zwischenkreis	

Das Fehlermanagementfenster können Sie mit <u>Fehler/Fehlermanagement</u> öffnen:

Mit Hilfe diese Fensters können Sie festlegen, wie der Servopositionierregler auf das Auftreten eines fehlerhaftes Ereignisses reagieren soll. Jedem dieser möglichen 64 verschiedenen Ereignisse wird eine von vier Reaktionsarten zugeordnet.

- 1. Die Endstufe wird abgeschaltet (Der Motor trudelt aus).
- 2. Gesteuerte Abschaltung (Der Motor wird gesteuert bis zum Stillstand abgebremst).
- 3. Eine Warnung wird angezeigt (Das Fehlerfenster wird automatisch geöffnet).
- 4. Eine Warnung wird nicht angezeigt (d.h. eine Warnung wird in das Fehlerfenster zwar eingetragen aber das Fehlerfester wird nicht automatisch geöffnet).

Einige der Ereignisse sind so schwerwiegend, dass der Nutzer sie nicht zu Warnungen degradieren darf oder dass eine bestimmte Reaktionsweise unumgänglich ist. In diesen Fällen kann der Benutzer die Optionsschaltfläche zwar selektieren, während der Online Parametrierung wird diese Eingabe vom Servopositionierregler jedoch wieder korrigiert. Während der Offline Parametrierung können solche Reaktionsweisen zwar parametriert und im Parametersatz abgespeichert werden, der Servopositionierregler wird diese jedoch nicht akzeptieren.

11 Anhang

11.1 Bedienungshinweise für den DIS-2 ServoCommander[™]

11.1.1 Standard Schaltflächen

Wenn Sie während der Arbeit ein Fenster geöffnet haben, so befindet sich in diesem Fenster eine Schaltflächen leiste, die häufig folgendes Aussehen hat:

Dabei haben die einzelnen Schaltflächen folgende Bedeutung:

<u>O</u>κ: Alle durchgeführten Änderungen werden akzeptiert und das Fenster wird geschlossen.

Abbruch: Alle Änderungen werden rückgängig gemacht, auch bereits übertragene Werte werden wieder restauriert, das Fenster wird geschlossen.

Sie betätigen eine dieser Schaltflächen, indem Sie

- mit der linken Maustaste darauf klicken,
- oder mit der **Tab** Taste diese Schaltfläche aktivieren und mit der **ENTER** Taste bestätigen
- oder über die Tastatur den unterstrichenen Buchstaben zusammen mit der ALT Taste eingeben.

Wenn das Aussehen der Schaltflächen bei einigen Menüs von der hier beschriebenen Form abweicht, so erhalten Sie genauere Informationen in diesem Handbuch.

11.1.2 Numerische Eingabefelder

In den Fenstern des Parametrierprogramms finden Sie immer wieder Felder für numerische Eingaben entsprechend der unteren Abbildung:

100,00	UPM
•	

Es gibt folgende Eingabemöglichkeiten:

1. Direkt über Tastatur: Geben Sie den Wert direkt in der Eingabezeile ein. Solange die Eingabe noch nicht abgeschlossen ist, erscheint der Text in dünner Schrift und wird noch nicht vom Parametrierprogramm übernommen (siehe Bild).

Zum Abschluss der Eingabe betätigen Sie die ENTER Taste oder wechseln in ein anderes Eingabefeld mit der Tab Taste. Der Zahlenwert erscheint dann in fetter Schrift.

- 2. Anklicken der Pfeiltasten: Der Wert ändert sich in kleinen Schritten (Feineinstellung).
- 3. Anklicken der Flächen zwischen grauem Kästchen und Pfeiltasten: Der Wert ändert sich in großen Schritten (Grobeinstellung).
- 4. Anklicken des grauen Kästchens und Bewegen der Maus mit gedrückter linker Maustaste: Der Wert lässt sich schnell im gesamten Wertebereich grob einstellen.

11.1.3 Steuerelemente

Die Nutzerführung erfolgt bevorzugt über grafisch orientierte Fenster.

In der folgenden Tabelle sind die Steuerelemente, die in den einzelnen Fenstern benutzt werden mit ihrer Beschreibung aufgeführt:

Tabelle	17:	Steuerelemente
---------	-----	----------------

Steuerelement	Name	Beschreibung
Þ	Kontrollkästchen	Eine Option, die ein Benutzer aktivieren bzw. deaktivieren kann, indem er das Kontrollkästchen markiert. Es können mehrere Kont- rollkästchen gleichzeitig aktiviert werden.
o	Optionsschaltfläche	Eine Schaltfläche, mit der ein Benutzer aus einer Reihe von Optio- nen auswählen kann.
	""-Schaltfläche	Eine Schaltfläche, mit der ein weitergehendes Menü gestartet wird, wenn der Benutzer darauf klickt
Einstellungen	Allgemeine Schalt- fläche	Eine Schaltfläche, mit der ein weitergehendes Menü gestartet wird, wenn der Benutzer darauf klickt

11.1.4 Darstellung von Einstellwerten und tatsächlichen Werten

Das Parametrierprogramm stellt die Zielwerte, die einer gewünschten Benutzereingabe entsprechen, und die im Gerät verwendeten Istwerte nach folgendem Konzept dar.

- 1. der Benutzer verändert die Scrollbox, im Fenster durch Ziehen des Scrollbars oder durch direkte Eingabe eines neuen Wertes.
- 2. Das Parametrierprogramm überträgt den Wert an den Servopositionierregler DIS-2.
- 3. Das Parametrierprogramm liest den nun aktuell gültigen Parameter umgehend wieder aus und zeigt diesen im grünen Feld an. Die Scrollbox selbst bleibt unverändert.

Verstärkung:	0,50	0,50
Zeitkonstante:	8,00 ms	8,00 ms
Drehzahlistwertfilter:	1,0 ms	1,0 ms
	• •	

ົງໃ

Begriffsdefinition:

- Zielwert: An den Servopositionierregler DIS-2 übertragener Ziel-Wert (vom Benutzer gewünschte Einstellung)
- Istwert: Dieser Wert ist im Servopositionierregler DIS-2 momentan effektiv wirksam.
 Eine Abweichung zum Zielwert kann verschiedene Ursachen haben.
 Beispiele:
 - > Quantisierungseffekte, Rundungseffekte, etc.
 - > Der veränderte Parameter wirkt sich erst nach dem Speichern und einem RESET aus
 - > Temporäre Wertebereichsüberschreitung, z.B. Nennstrom > Maximalstrom
 - Falsche Wertebereiche, z.B. beim Laden eines Parametersatzes von einem Servopositionierregler höherer Leistungsklasse (Nennstrom > Gerätenennstrom)

Mit dem Konzept aus unterschiedlichen Ziel- und Istwerten wird folgendes angestrebt: Ein Parametersatz kann von einem Servopositionierregler einer Leistungsklasse in einen Servopositionierregler einer anderen Leistungsklasse geladen werden und wieder zurück. Sofern keine weitere Parametrierungen vorgenommen wurde, werden die Zielwerte <u>nicht</u> verändert. Es ergeben sich lediglich unterschiedliche Istwerte aufgrund der verschiedenen Leistungsklassen. Eine schrittweise Veränderung eines Parametersatzes in Abhängigkeit von der Geräteleistungsklasse wird dadurch weitgehend vermieden.

11.1.5 Standard-Fenster

In der Grundeinstellung sind bei der Online-Parametrierung immer das Kommandofenster, das Statusfenster und das Istwertfenster geöffnet. Bei Offline Parametrierung fehlen das Statusfenster und das Istwertfenster.

Im **Istwertfenster** werden aktuelle Reglerparameter wie Ströme, Drehzahlen, etc. angezeigt. Die Konfiguration des Istwertfensters wird über den Menüpunkt <u>Anzeige/Istwerte</u> geleistet. Alle anzuzeigenden Werte müssen mit einem Haken versehen werden. Mit den Optionen Alle <u>einschalten</u> bzw. Alle <u>ausschalten</u> kann das Istwertfenster schnell minimiert bzw. maximiert werden.

stwerte	
Geschwindigkeit	
Istwert:	3,000 U/min
Istwert (Motor-EMK):	0,000 U/min
Sollwert:	0,000 U/min
Drehmoment	
Istwert:	-0,01 Nm
Eff. Motorstrom:	-0,10 A
Rotorlage:	64,47 *
Temperaturen	
Temp. Motor:	
Temp. Leistungsteil:	19 °C
Position:	0,354 U
I²t Motor:	0%
I ² t Servo:	0%
Zwischenkreisspannung	: 2 V

11.1.6 Verzeichnisse

Das Parametrierprogramm besitzt in der installierten Version folgende Unterverzeichnisse:

Verzeichnis	Inhalt
FIRMWARE	Firmware-Versionen
ТХТ	Default-Verzeichnis für die Klartextausgabe der Parameterdaten
DCO	Default-Verzeichnis für die Parameterdateien

Tabelle 18: Verzeichnisstruktur

11.1.7 Kommunikation über Kommunikationsobjekte

Das Parametrierprogramm greift mittels so genannter Kommunikationsobjekte über eine standardisierte, geräteinterne Softwareschnittstelle auf den Servopositionierregler DIS-2 zu. Bei der Abwicklung der Kommunikationsaufgaben werden intern Überwachungen auf folgende Fehlerzustände vorgenommen:

- Schreibzugriffe auf read-only Kommunikationsobjekte
- Lesezugriffe auf write-only Kommunikationsobjekte
- Über- bzw. Unterschreitungen des Wertebereiches
- Fehlerhafte Datenübertragung

In den ersten beiden Fällen handelt es sich um fatale Fehler, die in der Praxis normalerweise nie vorkommen. Im letztgenannten Fall wird vom Parametrierprogramm mehrfach versucht, den Lese- bzw. Schreibvorgang ohne Bitfehler durchzuführen.

Die Über- bzw. Unterschreitungen des Wertebereiches eines Kommunikationsobjektes werden mit einer Warnung angezeigt. Gibt es einen internen Wert für dieses Objekt, so wird der Wert zwar als Wunschwert gesichert, intern wird aber der ursprüngliche Wert beibehalten, ansonsten wird der Wert verworfen.

11.1.8 Beenden des Programms

Das Programm kann wie folgt beendet werden:

- Durch Wahl des Menüpunktes <u>Datei/Beenden</u>
- Durch die Tastenkombination <Alt>+F4
- Durch Anklicken des Kreuzchens links oben im Hauptfenster

Schnittstelle zugreift.

RS232 Kommunikationsparameter).

Unter Umständen ist es möglich, dass der Servopositionierregler mit eine anderen Baudrate arbeitet als die im Parametrierprogramm eingestellte. Wenn Sie **Baudraten durchsuchen** wählen, versucht das Parametrierprogramm mit allen möglichen Baudraten eine Kommunikation herzustellen.

Die **Offline-Parametrierung** ist nur dann sinnvoll, wenn Sie Parametersatzdateien ohne Servopositionierregler bearbeiten wollen. Siehe hierzu das *Kapitel 11.12 Offline-Parametrierung*.

Um eine falsch eingestellte Schnittstelle zu korrigieren, klicken Sie auf den Optionsschaltfläche

Seite 118

11.2 Herstellen der seriellen Kommunikation

Um die Daten für die Kommunikation korrekt einzustellen, müssen folgende Schritte durchgeführt werden:

- 1. Schließen Sie den Servopositionierregler DIS-2 komplett an.
- 2. Verbinden Sie eine freie Schnittstelle des PCs über ein Null-Modem-Kabel mit dem Servopositionierregler DIS-2.
- 3. Schalten Sie den Servopositionierregler DIS-2 ein.
- 4. Starten Sie das Parametrierprogramm

Wenn Sie im Schaltflächenmenü die "Online"-Schaltfläche grün markiert sehen (siehe Bild), sind die Kommunikationsparameter bereits korrekt eingestellt.

Wenn das Parametrierprogramm die serielle Schnittstelle nicht öffnen kann, erscheint beim Programmstart folgendes Fehlerfenster:

ceine Kommunikation 7 K	ommunikationsstörung an serieller Schnittstelle (COM1:)
Bitte stellen Sie die Verbi 24V-Versorgung des Regl	ndung mit einem Nullmodemkabel her und schalten Sie die ers ein
∀enn Sie ohne Antriebsro "Offline-Parameterierung"	egler Parametersätze bearbeiten wollen, wählen Sie
• Mit alten Parametern	noch einmal probieren (COM1, 115200 Baud)
C Comport wechseln	
C Baudraten durchsuch	nen
Offline-Parametrierur	ng
C Firmware-Download	

Ursache für diesen Fehler ist entweder eine falsch eingestellte Schnittstelle (meist eine Einstellung des Maustreibers) oder ein anderes Windows[®]- oder MS-DOS[®] - Programm, das auf die serielle

Um den Zugriffskonflikt mit einem auf die Schnittstelle benutzenden Programm zu lösen, beenden Sie das andere Programm (bei MS-DOS[®] - Programmen unbedingt auch die MS-DOS[®] - Shell beenden!!)

und klicken anschließend auf Mit alten Parametern noch einmal probieren.

Sollte der Servopositionierregler keine gültige Firmware haben, oder Sie möchten an dieser Stelle einen Firmware Download durchführen, so können Sie einen Firmware Download durch die Optionsschaltfläche **Firmware-Download** initiieren.

Durch das Anklicken der Optionsschaltfläche **Programm beenden** wird das Programm sofort beendet.

Die nachfolgende Tabelle beschreibt mögliche Fehlerursachen und Fehlerbehebungsstrategien:

Tabelle 19: Problembehebung bei serieller Kommunikation

Ursache	Maßnahme	
Kommunikation hat sich 'verschluckt'	Auf Mit alten Parametern noch einmal probieren klicken.	
Ausgewählter Comport ist falsch	Auf Comport wechseln klicken und den Anweisungen fol- gen.	
Baudraten vom Parametrierprogramm und vom Servopositionierregler stimmen nicht überein	Auf Baudraten durchsuchen klicken.	
Kommunikation des Servopositionierreglers gestört.	RESET am Servopositionierregler ausführen, d.h. ausschalten und wieder einschalten, danach auf Mit alten Parametern noch einmal probieren klicken.	
 Hardware-Fehler: ◆ Servopositionierregler nicht eingeschaltet ◆ Verbindungskabel steckt nicht ◆ Verbindungskabel gebrochen ◆ Falsche Pinbelegung für die serielle Verbindung 	Fehler beheben, danach auf Mit alten Parametern noch einmal probieren klicken.	
✤ Verbindungskabel zu lang	Baudrate reduzieren oder kürzeres Kabel verwenden.	

11.3 Info-Fenster

Unter **Info/Info** können allgemeine Informationen über den DIS-2 ServoCommander[™] abgerufen werden. Es erscheint folgendes Fenster:

pyright Firmware	/Hardware Kommunikation Zeiten
DIS-2 Servo	Commander
Version: 2.0 Applikation: 0 KM-Release: 1.1	
Copyright:	Metronix GmbH Kocherstrasse 3 D-38120 Braunschweig, Germany Tel.: 49-(0)531 / 8668 - 0 FAX : 49-(0)531 / 8668 - 555
Internet:	http://www.metronix.de
Email:	Support-Metronix@CooperTools.com

In der Registerkarte Copyright finden Sie folgende Informationen:

- Programmname, Versionsnummer
- Vertriebspartner: Anschrift und Telefonnummer
- Internet-Verbindung: zum Aktivieren Schaltfläche anklicken
- Email-Adresse: zum Erstellen einer Mail Schaltfläche betätigen

In der Registerkarte Firmware/Hardware finden Sie folgende Informationen:

- Hauptplatine: Typ, Seriennummer, Versionsnummer
- Bootloader: Versionsnummer
- Firmware: Versionsnummer

In der Registerkarte Kommunikation finden Sie folgende Informationen:

- Verwendeter Comport, Baudrate (bei Online-Parametrierung)
- verwandte Datei (bei Offline-Parametrierung)

In der Registerkarte Zeiten finden Sie Informationen über die Zykluszeiten von:

- Stromregler
- Drehzahlregler
- Lageregler

ື່ງໃ

Sowie den aktuellen Stand des Betriebsstundenzählers.

Im Falle einer Reklamation ist es Hilfreich, diese Daten auszulesen und bereitzuhalten.

11.4 Schnellzugriff über Symbolleiste

In der Symbolleiste unterhalb der Menüleiste können einige Funktionen des Parametrierprogramms direkt aufgerufen werden:

Image: Serve positionierregler Rücksetzen Parameter sichern Positionen einstellen Portpartiregler <	Symbol	Bedeutung
Image: Construction of the second	💳 😹 📘 🖳 🟒 ZOnline 🗗	
Offline-Parametrierung Online-Parametrierung Online-Parametrierung Kommunikation suchen Französische Sprache einstellen Englische Sprache einstellen Deutsche Sprache einstellen Deutsche Sprache einstellen Vertreichter Servopositionierregler Rücksetzen Parameter verter Parameter sichern Positionen einstellen Positionen einstellen Referenzfahrt Lageregler Drehzahlregler Stromregler Motordatenmenü Motordatenmenü		Oszilloskop
Online-Parametrierung Kommunikation suchen Französische Sprache einstellen Englische Sprache einstellen Deutsche Sprache einstellen Deutsche Sprache einstellen Parameter Save Parameter Save Parameter Servopositionierregler Rücksetzen Parameter sichern Positionen anfahren Positionen einstellen Referenzfahrt Lageregler Drehzahlregler Stromregler Motordatenmenü		Offline-Parametrierung
Kommunikation suchen Französische Sprache einstellen Englische Sprache einstellen Deutsche Sprache einstellen VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		Online-Parametrierung
Französische Sprache einstellen Englische Sprache einstellen Deutsche Sprache einstellen Servopositionierregler Rücksetzen Parameter sichern Positionen anfahren Positionen einstellen Referenzfahrt Lageregler Drehzahlregler Stromregler Motordatenmenü		Kommunikation suchen
Englische Sprache einstellen Deutsche Sprache einstellen		Französische Sprache einstellen
Deutsche Sprache einstellen Deutsche Sprache einstellen Deutsche Sprache einstellen Servopositionierregler Rücksetzen Parameter sichern Positionen anfahren Positionen einstellen Referenzfahrt Lageregler Drehzahlregler Stromregler Motordatenmenü		Englische Sprache einstellen
Image: Save Parameter Image: Save Parameter Servopositionierregler Rücksetzen Parameter sichern Positionen anfahren Positionen einstellen Referenzfahrt Lageregler Drehzahlregler Stromregler Keinenenü		Deutsche Sprache einstellen
Image: Image		
Servopositionierregler Rücksetzen Parameter sichern Positionen anfahren Positionen einstellen Referenzfahrt Lageregler Drehzahlregler Stromregler Motordatenmenü	Image: Save parameter Save parameter	
Parameter sichern Positionen anfahren Positionen einstellen Referenzfahrt Lageregler Drehzahlregler Stromregler Motordatenmenü		Servopositionierregler Rücksetzen
Positionen anfahren Positionen einstellen Referenzfahrt Lageregler Drehzahlregler Stromregler Motordatenmenü		Parameter sichern
Positionen einstellen Referenzfahrt Lageregler Drehzahlregler Stromregler Motordatenmenü		Positionen anfahren
Referenzfahrt Lageregler Drehzahlregler Stromregler Motordatenmenü		Positionen einstellen
Lageregler Drehzahlregler Stromregler Motordatenmenü		Referenzfahrt
Drehzahlregler Stromregler Motordatenmenü		Lageregler
Stromregler Motordatenmenü		Drehzahlregler
Motordatenmenü		Stromregler
		Motordatenmenü

11.5 Verwendung der Oszilloskop Funktion

Die in dem Parametrierprogramm integrierte Oszilloskop Funktion erlaubt die Darstellung von Signalverläufen und digitalen Zuständen sowie die Optimierung physikalischer Parameter.

Die aufgezeichneten Kurven, z.B. Sprungantworten können ausgedruckt, als Bitmap gespeichert oder nach Microsoft[®] Excel exportiert werden.

Das Oszilloskop kann durch den Menüpunkt Anzeige/Oszilloskop oder durch Anklicken der Schalt-

fläche 🗗 ges

gestartet werden.

Es öffnen sich zwei Fenster: das eigentliche Oszilloskop und das Einstellungsfenster für das Oszilloskop.

11.5.1 Oszilloskop Einstellungen

Frei wählbares Ko	ommunikationsobjekt 🗾
5kalierung	1 U/div
Offset:	0,00 div
	Löschen
ei wählbares Kom	munikationsobjekt
Dbjektnummer:	E0 (hex) - +
signed	
ohys. Einheit	Position (32 Bit)

Das Fenster Oszilloskop Einstellungen beinhaltet vier Registerkarten für genauere Einstellungen

- Ch1: Auswahl der Messgröße auf Kanal 1
- Ch2: Auswahl der Messgröße auf Kanal 2
- Zeitbasis: Einstellung der Zeitbasis
- Trigger: Einstellung des Triggers

Das Oszilloskop besitzt zwei Kanäle. In den **Registerkarten CH1** und **CH2** lassen sich für die entsprechenden Kanäle folgende Einstellungen auswählen:

 Darzustellende Messgröße. Klicken Sie die Auswahlbox des jeweiligen Kanals an und wählen Sie die physikalische Größe oder das Ereignis, welches Sie grafisch darstellen wollen.

- Farbe des Kanals. Klicken Sie auf die farbige Fläche. Es erscheint ein Dialog zur Farbauswahl.
- Y-Skalierung. Benutzen Sie den Schiebeschalter neben Skalierung, um die Vergrößerung in vertikaler Richtung einzustellen.
- Offset / Y-Position. Benutzen Sie den Schiebeschalter neben Offset, um die vertikale Position der Kurve zu verschieben. Ein Klick auf die Schaltfläche 0 bewirkt das Rücksetzen des Offset auf 0.

Die Darstellung der beiden Kanäle lässt sich löschen, wenn Sie die Schaltfläche Löschen anklicken.

Wurde als darzustellende Größe **Frei wählbares Kommunikationsobjekt** gewählt, könne Sie jedes Kommunikationsobjekt auf dem Oszilloskop darstellen. Hierzu werden zusätzlich folgende Angaben benötigt:

- Die Objektnummer des Kommunikationsobjektes
- Die Information, ob das Objekt einen vorzeichenbehafteten Wert zurückliefert bitte einen Haken hinter signed setzen.
- Die physikalische Einheit des Objektes
- Eine Maske. Mit dieser Maske lassen sich einzelne Bit eines Kommunikationsobjektes ausmaskieren und zur Anzeige bringen. Bei analogen Werten sollte diese Maske auf FFFFFFF (hex) eingestellt werden. Diese Maske dient im Wesentlichen dazu, einzelne Bits eines Statuswortes darzustellen.

Die Darstellung von frei wählbaren Kommunikationsobjekten ist nur in Spezialfällen sinnvoll.

In der **Registerkarte Zeitbasis** kann die Zeitauflösung und die Verzögerung der Aufzeichnung eingestellt werden:

- Mit dem oberen Schiebeschalter Zeit kann die Zeitauflösung angegeben werden. Ein Wert von 10 msec/div bedeutet beispielsweise, dass eine Kästchenbreite in der Oszilloskopdarstellung einem Zeitraum von 10 Millisekunden entsprechen.
- Mit dem Schiebeschalter Verzögerung kann die Position des Triggerereignisses im Oszilloskopbildschirm bestimmt werden. Ein Wert von 0 bedeutet, dass das Triggerereignis am linken Rand des Oszilloskopbildschirmes aufgezeichnet wird. Ein negativer Wert für die Verzögerung bedeutet, dass die Ereignisse vor dem Auftreten der Triggerbedingung mit aufgezeichnet werden ("Pretrigger").

Die Triggerquelle kann in der **Registerkarte Trigger** aus der Auswahlliste im Feld **Triggerquelle** ausgewählt werden.

Wie auch bei CH1 und CH2 kann auch das Triggerereignis aus einer Liste vordefinierter Standardereignisse ausgewählt werden. Alternativ können Sie **Frei Wählbares Kommunikationsobjekt** selektieren und auf jedes Kommunikationsobjekt triggern.

Es wird zwischen **digitalen** und **analogen** Triggerquellen unterschieden. Digitale Triggerquellen können nur den Zustand ja oder nein (bzw. aktiv oder inaktiv) annehmen. Ein Beispiel ist DIn7 Endschalter 0. Im Gegensatz dazu können analoge Triggerquellen beliebige numerische Werte annehmen (z.B. Drehzahl-Istwert).

Bei analogen Triggerquellen erscheint eine Einstellbox für die **Triggerschwelle**. Der Triggervorgang beginnt, sobald der analoge Wert die Schwelle über- oder unterschritten hat.

Mit der Triggerflanke können sie einstellen, wann auf ein Ereignis reagiert werden soll:

F	steigende Flan- ke	digitaler Trigger: Ereignis tritt ein analoger Trigger: Schwelle wird überschritten
¥.	fallende Flanke	digitaler Trigger: Ereignis verschwindet analoger Trigger: Schwelle wird unterschritten

Der Triggermodus und damit das Oszilloskop ist nur dann aktiv, wenn das Kontrollkästchen Run / Stop im Oszilloskop-Fenster markiert ist! Wird das Transferfenster geöffnet oder der Parametersatz gesichert wird dabei das Oszilloskop deaktiviert. Deswegen muss das Kontrollkästchen danach gelöscht und wieder gesetzt werden, um das Oszilloskop wieder zu aktivieren.

Im Feld Modus wird eingestellt, wann getriggert wird. Es gibt drei verschiedene Triggermodi:

- Auto: Es wird fortwährend getriggert und angezeigt, egal ob die Triggerbedingung erfüllt wurde oder nicht.
- Normal: Es wird getriggert und angezeigt, sobald die Triggerbedingung erfüllt wurde. Nach erfolgter Anzeige und bei erneutem Auftreten der Triggerbedingung wird wieder getriggert.
- Single: Es wird nur einmal getriggert, wenn die Triggerbedingung erfüllt wurde. Danach wird der Zustand inaktiv geschaltet, indem das Kontrollkästchen Run (s.u.) deaktiviert wird.

11.5.2 Oszilloskopfenster

Das Oszilloskop besitzt verschiedene Symbolschaltflächen, mit denen man Aktivitäten auslösen kann. Sie sind im Folgenden abgebildet:

Symbol	Bedeutung
	Aufruf des Fensters "Oszilloskop- Einstellungen"
	Dünne Linien in der Oszilloskopanzeige
	Dicke Linien in der Oszilloskopanzeige
	Oszilloskopfenster maximieren
	Oszilloskopfenster minimieren
	Druckt das Oszilloskopfenster
	Ruf Excel auf und erzeugt ein Tabellen- blatt mit den Messwerten der letzten Messung
	(Auf dem PC muss Excel installiert sein)
	Zoom-Funktion: Hilfetext
	Beendet die Zoomfunktion
<u></u>	
L	Verschiebt den angezeigten Ausschnitt in horizontaler Richtung

Weitere Schaltflächen und Oberflächenkontrollen:

Diese Oberflächenkontrollen steuern und visualisieren die Cursorsteuerung des Oszilloskops.
 Wenn der Benutzer auf das eigentliche Oszilloskopfenster fährt, wird der Wert des ausgewähl-

ten Kanals zum aktuellen Zeitpunkt (Position des Cursors) numerisch dargestellt. Im aktuellen Beispiel hat der Kanal **CH2** zum Zeitpunkt **t=6 s** den Wert **1,712 U/min**. Durch Betätigung der Schaltfläche **Cursor** kann auf einen Kanal umgeschaltet werden.

- (2) Über diese Kontrollkästchen können die Kanäle selektiv ein- und ausgeblendet werden.
 Ein aktiviertes Kontrollkästchen bedeutet: Dieser Kanal wird angezeigt.
- (3) Über diese Schaltfläche kann manuell ein Triggerereignis ausgelöst werden. Das Oszilloskop beginnt sofort mit der Aufzeichnung der Daten.
- (4) Die Leuchtdiode zeigt den derzeitigen Betriebszustand des Oszilloskops an.
 Eine grüne LED bedeutet: Das Oszilloskop ist aktiv.
 Ein inaktives Oszilloskop wird durch eine rote Leuchtdiode angezeigt.

Über das Kontrollkästchen **RUN / STOP** kann man das Oszilloskop aktivieren bzw. deaktivieren. Schalten Sie das Kontrollkästchen ein, wenn Sie das Oszilloskop benutzen wollen.

(5) Diese farbige Fläche zeigt den derzeitigen Status des Oszilloskops an. Es gibt hierfür folgende Einträge:

inactive	Das Oszilloskop ist momentan nicht aktiv	
start	Das Oszilloskop wird gestartet	
wait for trigger	Es wird auf das Trigger-Ereignis gewartet	
pretrigger	Für den Pretrigger wurde mit der Datenaufzeichnung begonnen	
trigger found	Ein Triggerereignis wurde gefunden; es wurde aber noch nicht	
	mit der Datenaufzeichnung begonnen	
data read	Die Kanaldaten werden zum Parametrierprogramm übertragen	

11.6 Serielles Kommunikationsprotokoll

Die Kommunikation zwischen dem Servopositionierregler DIS-2 und der Parametrieroberfläche DIS-2 ServoCommanderTM findet über ein serielles Kommunikationsprotokoll, im ASCII Format, statt. Ein Befehl wird immer mit einem <CR> abgeschossen.

Die genauen Technischen Daten der seriellen Schnittstelle sind in Kapitel 9.2.2 Serielle Kommunikation über den DIS-2 ServoCommanderTM beschrieben.

Im Wesentlichen findet die Kommunikation über sogenannte Kommunikationsobjekte statt. Über diese Kommunikationsobjekte kann auf die Istwerte und Parameter des Servopositionierreglers zugegriffen werden. Dabei werden alle physikalischen Größen in normierten Basiseinheiten überge-

ben. In folgender Tabelle ist die Befehlssyntax der Kommunikationsobjekte definiert:

Befehl	Antwort Beschreibung		
Objekt schreiben:	OK!	Im fehlerfreien Fall wird immer ,OK!' zurückge-	
OW:NNNN:DDDDDDDD	bzw.	sendet. Im Fehlerfall wird der Befehl und ein	
	OW:FFFF FFFF	Fehlercode gesendet.	
Objekt lessen:	NNNN:DDDDDDDD	Antwort grundsätzlich 32 Bit. Im Fehlerfall wird	
OR:NNNN	bzw.	der Befehl und ein Fehlercode gesendet.	
	OR:FFFF FFFF		
Internen Wert lesen:	NNNN:DDDDDDDD	Antwort grundsätzlich 32 Bit. Im Fehlerfall wird	
OI:NNNN	bzw.	der Befehl und ein Fehlercode gesendet.	
	OI:FFFF FFFF		
Minimalwert lesen:	NNNN:DDDDDDDD	Antwort grundsätzlich 32 Bit. Im Fehlerfall wird	
ON:NNNN	bzw.	der Befehl und ein Fehlercode gesendet	
	ON:FFFF FFFF		
Maximalwert lesen:	NNNN:DDDDDDDD	Antwort grundsätzlich 32 Bit. Im Fehlerfall wird	
OX:NNNN	bzw.	der Befehl und ein Fehlercode gesendet	
	OX:FFFF FFFF		

Tabelle 20: Befehlssyntax KO's

Tabelle 21: Buchstabenbedeutung in der Befehlssyntax

Buchstabe	Bedeutung (alles hexadezimal)			
NNNN	Kommunikation	Kommunikationsobjekt-Nummer		
DDD	Datenbytes			
FFF	Fehlercode:			
	0x0000002	Datenwert zu klein > nicht geschrieben		
	0x0000003	Datenwert zu groß > nicht geschrieben		
0x0000004		Datenwert zu klein > geschrieben aber vorher begrenzt		
	0x0000005	Datenwert zu groß > geschrieben aber vorher begrenzt		
	0x0000008	Bitkonstantenwert nicht zulässig		
	0x0000009	Bit-Datenwert ist momentan (in dieser Betriebsart) nicht zulässig		
	0x0000010	Lese- oder Schreibfehler im Flash		
	0x00020000	Untere Grenze für das Objekt existiert nicht		
	0x00030000	Obere Grenze für das Objekt existiert nicht		
	0x00040000	kein Objekt mit der Nummer vorhanden (Objekt existiert nicht)		
	0x00050000	Objekt darf nicht geschrieben werden		

Zusätzlich zu den Befehlen für den Zugriff auf die Kommunikationsobjekte, gibt es einige weitere Befehle für die Steuerung des Servopositionierreglers.

Die folgenden Tabelle gibt eine Übersicht über den verwendeten Befehlsatz:

Befehl	Antwort	Beschreibung	
BAUDbbbb	OK!	Baudrate setzen	
BOOT?	SERVICE / APPLICATION	Statusabfrage: Bootloader aktiv?	
BUS?	xxxx:BUS:nn:bbbb:mmmm	CAN-Bus Status	
INIT!	Einschaltmeldung	Defaultparametersatz laden	
RESET!	Einschaltmeldung	HW-Reset auslösen	
SQT+	xxxx:CQT+	Fehlerspeicher löschen	
SAVE!	DONE	Parametersatz im FLASH sichern	
SEP!	DONE	Parametersatz aus dem FLASH laden	
TYP?	TYP:dddd	Typenabfrage	
VERSION?	xxxx:VERSION:dddd	Versionsabfrage	
=iiiiss:dd	=iiiiss:dd	Simulation SDO Schreibzugriff	
?iiiiss	=iiiiss:dd	Simulation SDO Lesezugriff	
	ERROR!	Befehl unbekannt / Fehler	

Tabelle 22: Befehlssyntax RS232

Tabelle 23: Buchstabenbedeutung in der Befehlssyntax

Buchstabe	Bedeutung (alles hexadezimal)
хххх	Status-Meldung
dddd	Datenbytes
nn	Knotennummer
bbbb	Baudrate
mmmm	Modus
iiii	Index des CAN-Open SDObjektes
SS	Subindex des CAN-Open SDObjektes

11.7 Verzeichnis der Kommunikationsobjekte

In diesem Kapitel sind die Kommunikationsobjekte aufgelistet, mit denen die Parametrieroberfläche DIS-2 ServoCommander[™] die Daten mit dem Servopositionierregler DIS-2 austauscht.

Im *Kapitel 11.7.1 Basiseinheiten* befindet sich eine Auflistung der für die Kommunikationsobjekte verwendeten Basiseinheiten.

Nr.	Name	Bedeutung	Skalierung
0000	currc_cyc_time_currc	Zykluszeit des Stromreglers	Basiseinheit Zeit
0001	currc_cyc_time_spdc	Zykluszeit des Drehzahlreglers	Basiseinheit Zeit
0002	currc_cyc_time_posc	Zykluszeit des Lageregler	Basiseinheit Zeit
0003	main_abtast_ablauf	Zykluszeit des Kommunikationshandler	Basiseinheit Zeit
0004	ioh_uzk_nenn	Nennzwischenkreisspannung des Reglers	Basiseinheit Spannung
0005	currc_i_nom_dev	Geräte-Nennstrom (Spitzenwert)	Basiseinheit Strom
0006	currc_i_max_dev	Geräte-Maximalstrom (Spitzenwert)	Basiseinheit Strom
0007	pfc_uzk_min	minimale Zwischenkreisspannung des Reg- lers	Basiseinheit Spannung
0010	srvc_device_type	Gerätekennung	keine
0011	main_cpu_time_remaining	Auslastung Regelinterrupt	Basiseinheit Prozent
0012	srvc_operation_time	Betriebsstundenzähler	in Sekunden
0013	srvc_commiss_state	Inbetriebnahmezustand	keine
0014	srvc_device_serial_num	Seriennummer des Gerätes	keine
0015	srvc_device_revision	Hardware-Revision	Obere 16 Bit: Hauptrevision
0016	srvc_encoder_type	Ausgewählte Winkelgeber-Variante	Obere 16 Bit: Hauptrevision Untere 16 Bit: Subrevision
0017	srvc_soft_main	Firmware-Haupt- und Subrevisionsnummer	Obere 16 Bit: Hauptrevision
		des Versionsverwaltungssystems	Untere 16 Bit: Subrevision
0018	srvc_custom_main	Kundenapplikationsnummer Subrevisions-	Obere 16 Bit: Hauptrevision
		nummer.	Untere 16 Bit: Subrevision
0019	main_bootloader_version	Haupt- und Subrevision des Bootloaders	Obere 16 Bit: Hauptrevision Untere 16 Bit: Subrevision
001A	srvc_motid_ctrl	Kontrollwort für Winkelgeber Identifikation	0: Identifikation zurücksetzen 1: Winkelgeber identifizieren
001B	srvc_u_nenn_mot	Nennspannung des Motors	Basiseinheit Spannung
001C	currc_i_nom	Nennstrom (Spitzenwert) des Motors	Basiseinheit Strom
001D	currc_i_max	Maximalstrom (Spitzenwert) des Motors	Basiseinheit Strom
001E	currc_iit_mot_time	l ² t-Integrationszeit für den Motor	Basiseinheit Zeit
001F	srvc_torque_const	Drehmomentkonstante	Basiseinheit
0020	srvc_nenn_mot_speed	Nenndrehzahl des Motors	Basiseinheit Drehzahl
0021	spdc_n_ref_lim_pos	Begrenzung Solldrehzahl	Basiseinheit Drehzahl
0022	eeval_enc_polp_num	Polpaarzahl des Gebersystems (Motor)	Polpaarzahl, nicht Polzahl!
0023	ioh_l_mot	Induktivität der Wicklung Ls des Motors	Basiseinheit Induktivität
0024	ioh_r_mot	Widerstand der Wicklung Rs des Motors	Basiseinheit Widerstand
0025	ioh_mot_temp_max	maximale Motortemperatur	Basiseinheit Temperatur

Tabelle 24: Liste aller KOs

Nr.	Name	Bedeutung	Skalierung
0026	srvc_soft_prod_step	Firmware-Haupt- und Subrevisionsnummer	Obere 16 Bit: Hauptrevision
			Untere 16 Bit: Subrevision
0030	seqc_opmode	Parametrieren der Betriebsart und Rampe	keine
0031	stat_conf2_1	Konfigurationsworte des Antriebs	keine
0032	rs232_stat_sum	Statuswort des Statusfensters	keine
0033	seqc_brake_unlock_time	Verzögerungszeit für das Lösen der Halte- bremse.	Basiseinheit Zeit
0034	seqc_brake_lock_time	Verzögerungszeit für das Feststellen der Haltebremse	Basiseinheit Zeit
0035	seqc_auto_brake_time	Mindestwartezeit bis zum Ansprechen der Bremse Wird zur Zeit nicht unterstützt	Basiseinheit Zeit
0036	commh_ctrlenab_log	Parameter beschreibt die Komponente, die die Reglerfreigabe erteilt.	0: Nur DIN9 1: DIN9 und RS232 2: DIN9 und CAN
0040	commh_null	Hilfsobjekt, dass immer Null zurückliefert	keine
0050	rs232_baudrate	Baudrate für die RS232 Kommunikation	Baudrate RS232
0051	rs232_para_conf	Konfigurationswort für Parametriersoftware	keine
0052	rs232_unit_x_var_i	physikalische Einheiten Position	keine
0053	rs232_unit_x_conv_i	physikalische Einheiten Position	keine
0054	rs232_unit_x_numerator	Factor-Group Position Zähler	keine
0055	rs232_unit_x_divisor	Factor-Group Position Nenner	keine
0056	rs232_unit_x_decimals	Nachkommastellen Weg	keine
0057	rs232_unit_n_var_i	physikalische Einheiten: Geschwindigkeit	keine
0058	rs232_unit_n_conv_i	physikalische Einheiten: Geschwindigkeit	keine
0059	rs232_unit_n_numerator	Factor-Group Geschwindigkeit Zähler	keine
005A	rs232_unit_n_divisor	Factor-Group Geschwindigkeit Nenner	keine
005B	rs232_unit_n_decimals	Nachkommastellen Geschwindigkeit	keine
005C	rs232_unit_a_var_i	physikalische Einheiten: Beschleunigung	keine
005D	rs232_unit_a_conv_i	physikalische Einheiten: Beschleunigung	keine
005E	rs232_unit_a_numerator	Factor-Group Beschleunigung Zähler	keine
005F	rs232_unit_a_divisor	Factor-Group Beschleunigung Nenner	keine
0060	rs232_unit_a_decimals	Nachkommastellen Beschleunigung	keine
0061	rs232_kommando	Kommandowort	keine
0062	rs232_osc_screen_time	Gesamtzeit	Basiseinheit Zeit
0063	rs232_display_free_adr	Freie KO-Adresse	KO-Nummer "freies KO"
0070	errh_err_field_0	Bitfeld der Hauptfehlernummern 1 bis 32	Bit = 0: Fehler nicht aktiv Bit = 1: Fehler aktiv
0071	errh_err_field_1	Bitfeld der Hauptfehlernummern 33 bis 64	Bit = 0: Fehler nicht aktiv
0072	errh_prio_field_0	Bitfeld der Hauptfehlernummern 1 bis 32	Fehler Bit = 0: Motor bremsen End-
			stufe aus
0073	errh_prio_field_1	Bitfeld der Hauptfehlernummern 33 bis 64	Bit = 1: Endstufe aus
0074	errh_warn_field_0	Bitfeld der Hauptfehlernummern 1 bis 32	Warnung Bit = 0: Warnung nicht anzei-
0075	orrh worn field 4	Diffeld der Hourstehlemungen ein 20 hie 24	gen Dit 1. Morrison
00/5		Dilleid der Hauptreniernummern 33 bis 64	
0080	purrc_i_u_act	gemessener Phasenstrom Phase U	Basiseinneit Strom

Nr.	Name	Bedeutung	Skalierung
0081	currc_i_v_act	gemessener Phasenstrom Phase V	Basiseinheit Strom
0082	ioh_uzk_volt	Spannung im Zwischenkreis	Basiseinheit Spannung
0083	ioh_mot_temp	Motortemperatur	Basiseinheit Temperatur
0084	ioh_power_stage_temp	Temperatur Leistungsteil	Basiseinheit Temperatur
0085	ioh_din	Pinzustand der digitalen Eingänge	keine
0086	ioh_dout_data	Aktueller Zustand der digitalen Ausgänge Bitfeld,	DOUT0 Betriebsbereit, fest- verdrahtet
			DOUT1 Programmierbar DOUT2 Programmierbar DOUT3 Haltebremse. Fest- verdrahtet
0087	ioh_aout_range	Wertebereich des Analogmonitors (Maxi- mum) für beide Kanäle	Basiseinheit Spannung
0088	ioh_aout_resolution_volt	Auflösung des Analogmonitors, Angabe einer Spannung für ein Bit bezogen auf den Wertebereich	Basiseinheit Spannung
0089	ioh_dout2_1_func	Legt fest welche Funktionalität auf welchen digitalen Ausgang gelegt wird.	keine
008A	ioh_aout0_ko_nr	Analogmonitor 0: Nummer des Kommunika- tions-Objektes der auszugebende Größe.	Nummer des Kommunikati- ons-Objektes der auszuge- bende Größe.
008B	ioh_aout0_scale	Analogmonitor 0: Skalierung	Basiseinheit Verstärkung
008C	ioh_aout0_offset	Offsetspannung für den Analogmonitor	Basiseinheit Spannung
008D	ioh_aout1_ko_nr	Analogmonitor 1: Nummer des Kommunika- tionsobjektes der auszugebende Größe.	Nummer des Kommunikati- onsobjektes der auszuge- bende Größe.
008E	ioh aout1 scale	Analogmonitor 1: Skalierung	Basiseinheit Verstärkung
008F	ioh aout1 offset	Offsetspannung für den Analogmonitor	Basiseinheit Spannung
0090	ioh_ain0_offs	Offset AIN0	Basiseinheit Spannung
0091	ioh_ain1_offs	Offset AIN1	Basiseinheit Spannung
0092	ioh_ain0_safezero	sichere Null	Basiseinheit Spannung
0093	ioh_ain1_safezero	sichere Null	Basiseinheit Spannung
0094	ioh_control	Konfigruation Analogmonitore & Tempera- tursensor	keine
0095	ioh_pins_used	Die Werte für DIN0 DIN3, können optional als AIN0, #AIN0, AIN1, #AIN1 parametriert werden	keine
00A0	eeval_enc_phi	Rückgabe der Rotorlage ohne Winkelge- beroffset	Basiseinheit Grad
00A1	enc_config	Encoder Konfigurationswort	keine
00A2	emu_ctrl	Setzen von Betriebsarten	keine
00A3	eeval_enc_phi_offs	Offsetwinkel des Winkelgebers eine U	Basiseinheit Grad
00A4	eeval_x2b_line_cnt	Anzahl der Striche eines analogen Inkrementalgebers	Strichzahl Inkremente = 4 x Strichzahl
00A5	emu_enc_line_cnt	Ausgangsstrichzahl der Encoderemulation	Strichzahl Inkremente = 4 x Strichzahl (321024)
00A6	emu_enc_offset	Offset zwischen Sollwinkel und Ausgangs- winkel der Encoderemulation	Basiseinheit Grad

Nr.	Name	Bedeutung	Skalierung
00A7	eeval_motid_w_status	Status der Motid_w	keine
00A8	enc_sync_num	Zähler für den Getriebefaktor bei der Syn-	keine
		chronisation	
00A9	enc_sync_div	Nenner für den Getriebefaktor bei der Syn-	keine
		chronisation	
00AA	enc_encoder_status	Status des Winkelgebers	keine
00AB	enc_hiperface_line_cnt	Anzahl der Striche eines SINCOS Gebers	keine
00AC	eeval_enc_phi_offs_2	Offsetwinkel der 2ten Spur z.B Hallgeber	Basiseinheit Grad
		beim Inkrementalgeber	
0000	currc_i_q_act	Wirkstrom-Istwert in Rotorkoordinaten	Basiseinheit Strom
00C1	currc_i_d_act	Blindstrom-Istwert in Rotorkoordinaten	Basiseinheit Strom
00C2	currc_i_q_ref	Wirkstrom-Sollwert in Rotorkoordinaten	Basiseinheit Strom
00C3	currc_i_d_ref	Blindstrom-Sollwert in Rotorkoordinaten	Basiseinheit Strom
00C4	currc_iit_pwr_level	aktueller Zustand des i2t-Integrators für die	Basiseinheit Prozent
		Endstufe	
00C5	currc_iit_mot_level	aktueller Zustand des i2t-Integrators für den	Basiseinheit Prozent
		Motor	
00C6	currc_i_lim_act	aktuelle Momentenbegrenzung	Basiseinheit Strom
		begrenzt auf 0 - i_max	
00C7	currc_i_ref_rs232	Sollmoment RS232	Basiseinheit Strom
00C8	currc_i_ref_can	Sollmoment CAN	Basiseinheit Strom
00C9	currc_i_ref_ftd	Sollmoment FTD	Basiseinheit Strom
00CA	currc_i_ref_profi	Sollmoment Profi	Basiseinheit Strom
00CB	currc_i_lim_rs232	parametrierbare Momentenbegrenzung	Basiseinheit Strom
		RS232	
00CC	currc_i_lim_can	parametrierbare Momentenbegrenzung	Basiseinheit Strom
00CD	currc_i_lim_ftd	parametrierbare Momentenbegrenzung FID	Basiseinheit Strom
OOGE	currc_i_lim_profi	parametrierbare Momentenbegrenzung Profi	Basiseinheit Strom
00CF	currc_ctrl	Currc Control/Configword	
00D0	currc_ctrl_gain_q	Wirkstromregler P-Verstärkung	Basiseinheit Verstärkung
00D1	currc_ctrl_time_q	Wirkstromregler Zeitkonstante I-Anteil	Basiseinheit Zeit
00D2	currc_ctrl_gain_d	Blindstromregler P-Verstärkung	Basiseinheit Verstärkung
00D3	currc_ctrl_time_d	Blindstromregler Zeitkonstante I-Anteil	Basiseinheit Zeit
00D4	currc_sel_i_switch	Selektor Momentensollwert	keine
00D5	currc_sel_i_lim_switch	Selektor Momentenbegrenzung	keine
00D6	ssel_ain0_i_per_volt	Drehmoment-Sollwert-Skalierung AIN0:	Basiseinheit Strom
		Ampere pro Volt	
00D7	ssel_ain1_i_per_volt	Drehmoment-Sollwert-Skalierung AIN1:	Basiseinheit Strom
		Ampere pro Volt	
00D8	currc_i_ref_jog1	Jogsollwert1 (wird nicht unterstützt)	Basiseinheit Strom
00D9	currc_i_ref_jog2	Jogsollwert2 (wird nicht unterstützt)	Basiseinheit Strom
00E0	ssel_n_ref	Drehzahl-Sollwert (Eingangsgröße des DZ-	Basiseinheit Drehzahl
		Reglers)	
00E1	ssel_n_act	Drehzahl-Istwert	Basiseinheit Drehzahl
00E2	ssel_n_act_disp	Drehzahl-Istwert (gefiltert) für Anzeige in	Basiseinheit Drehzahl
		D2SC	

Nr.	Name	Bedeutung	Skalierung
00E3	spdc_n_ref_rs232	Solldrehzahl RS232	Basiseinheit Drehzahl
00E4	spdc_n_ref_can	Solldrehzahl CAN	Basiseinheit Drehzahl
00E5	spdc_n_ref_ftd	Solldrehzahl FTD	Basiseinheit Drehzahl
00E6	spdc_n_ref_profi	Solldrehzahl Profi	Basiseinheit Drehzahl
00E7	spdc_n_ref_hilf_rs232	Hilfssolldrehzahl RS232	Basiseinheit Drehzahl
00E8	spdc_n_ref_hilf_can	Hilfssolldrehzahl CAN	Basiseinheit Drehzahl
00E9	spdc_n_ref_hilf_ftd	Hilfssolldrehzahl FTD	Basiseinheit Drehzahl
00EA	spdc_n_ref_hilf_profi	Hilfssolldrehzahl Profi	Basiseinheit Drehzahl
00EB	ssel_ctrl_stat	Konfiguration DZ-Regelung	keine
00EC	spdc_ctrl_gain	Regler P-Verstärkung	Basiseinheit Verstärkung
00ED	spdc_ctrl_time	Regler Zeitkonstante I-Anteil	Basiseinheit Zeit
00EE	spdc_sel_n_switch	Selektor Drehzahlregler für Drehzahlsollwert	keine
00EF	spdc_sel_h_n_switch	Selektor Hilfssollwert für Drehzahlsollwert	keine
00F0	ssel_ain0_n_per_volt	Drehzahl Sollwertskalierung AIN0: DZ pro Volt	Basiseinheit Drehzahl
00F1	ssel_ain1_n_per_volt	Drehzahl Sollwertskalierung AIN1: DZ pro Volt	Basiseinheit Drehzahl
00F2	ssel_time_c_n_act_filter	Filterzeitkonstante des Drehzahl- Istwertfilters	Basiseinheit Zeit
00F3	ssel_n_acc_pos	Rampengenerator - Steigung bei: Pos. Drehzahl - steigender Flanke	Basiseinheit Beschleunigung
00F4	ssel_n_dec_pos	Rampengenerator- Steigung bei: Pos. Drehzahl - Fallender Flanke	Basiseinheit Beschleunigung
00F5	ssel_n_acc_neg	Rampengenerator - Steigung bei: Neg. Drehzahl - steigender Flanke	Basiseinheit Beschleunigung
00F6	ssel_n_dec_neg	Rampengenerator - Steigung bei: Neg. Drehzahl - Fallender Flanke	Basiseinheit Beschleunigung
00F7	ssel_lim_sw_ramp_dec	Bremsbeschleunigung für die Endschalter-	Basiseinheit Beschleunigung
00F8	ssel_enab_off_ramp_dec	Bremsbeschleunigung für die Schnellhalt- Rampe	Basiseinheit Beschleunigung
00F9	spdc_n_target_speed	Vergleichsdrehzahl für Meldung, bei Errei- chen von n_mel +/- n_mel_hyst wird ein Bit im Statuswort gesetzt	Basiseinheit Drehzahl
00FA	spdc_n_target_win_speed	Hysterese für die Drehzahlmeldungen: n_ist = n_mel und n_ist = n_soll	Basiseinheit Drehzahl
00FB	spdc_ramp_brake_max_time	maximale Zeit beim Schnellhalt	Basiseinheit Zeit
00FC	n_ramp_brake_min	DZ bei der Schnellhalt erfolgreich beendet	Basiseinheit Drehzahl
00FD	spdc_n_ref_jog1	Jogsollwert1 (wird nicht unterstützt)	Basiseinheit Drehzahl
OOFE	spdc_n_ref_jog2	Jogsollwert2 (wird nicht unterstützt)	Basiseinheit Drehzahl
00FF	ssel_n_act_ixr	DZ-Istwert berechnet über Maschinenmodel	Basiseinheit Drehzahl
0100	ssel_n_act_filter	DZ-Istwert mit dem Drehzahlistwertfilter gefiltert	Basiseinheit Drehzahl
0110	psel_x_act	Lage-Istwert	Basiseinheit Lage
0111	ioh_pos_selector	Wert des Zielselektors, der auch aktuell gültig ist	063 = Positionsdatensätze
0112	posi_bus0_pointer	Zeiger auf aktuellen Positionsparameter über rs232	063 = Positionsdatensätze

Nr.	Name	Bedeutung	Skalierung
0113	posi_bus1_pointer	Zeiger auf aktuellen Positionsparameter über CAN	063 = Positionsdatensätze
0114	posi_bus2_pointer	Zeiger auf aktuellen Positionsparameter über FTD	063 = Positionsdatensätze
0115	posi_bus3_pointer	Zeiger auf aktuellen Positionsparameter über Profi	063 = Positionsdatensätze
0116	posc_ctrl_gain	Lageregler-Verstärkung	Basiseinheit Verstärkung
0117	posc_n_lim_pos	Symetrische Begrenzung der maximalen Ausgangsdrehzahl des Lagereglers	Basiseinheit Drehzahl
0118	pos_sel_parameter	Sollwertselektor Lageregler	keine
0119	posc_x_diff_time	Zeit bis Schleppfehler ausgelöst wird	Basiseinheit Zeit
011A	posc_x_diff_lim_pos	Schleppfehler (Lagedifferenz Soll/Ist)	Basiseinheit Lage
011B	posc x dead rng pos	Totbereich Lagedifferenz	Basiseinheit Lage
011C	ipo_sw_lim_pos	Positionsgrenze positiv - Softwareendschal- ter	Basiseinheit Lage
011D	ipo_sw_lim_neg	Positionsgrenze negativ - Softwareend- schalter	Basiseinheit Lage
011E	posi_bus0_start_delay	Anfahrverzögerung nach dem Start einer Positionierung / gültig für alle Positionsziele	Basiseinheit Zeit
011F	posi_bus0_x_trig	Restweg für den Restwegtrigger gültig für alle Positionsziele	Basiseinheit Lage
0120	posc_x_target_win_pos	Toleranzfenster "Ziel erreicht"	Basiseinheit Lage
0121	posc_x_target_time	Zeitkonstante "Ziel erreicht"	Basiseinheit Zeit
0122	psel_home_offs	Offset für Referenzfahrt	Basiseinheit Lage
0123	posi_bus0_ctrl	Steuerwort für die Eigenschaften und den Ablauf der aktuellen Positionierung	keine
0124	posi_bus0_x_end_h	Zielposition im aktuell ausgewählten Positi- onssatz	Basiseinheit Lage
0125	posi_bus0_v_max	Fahrgeschwindigkeit bei der Positionierung Positioniergruppenparameter	Basiseinheit Drehzahl
0126	posi_bus0_v_end	Endgeschwindigkeit bei der Positionierung z.Z. = 0	Basiseinheit Drehzahl
0127	posi_bus0_a_acc	Beschleunigung im motorischen Bereich des Antriebs Positioniergruppenparameter	Basiseinheit Beschleunigung
0128	posi_bus0_a_dec	Beschleunigung im generatorischen Bereich des Antriebs; Bremsbeschleunigung Positioniergruppenparameter	Basiseinheit Beschleunigung
0129	posi_bus0_a_acc_jerkfree	Ruckfreie Anteile bei Beschleunigung Positioniergruppenparameter	Basiseinheit Zeit
012A	posi_bus0_a_dec_jerkfree	Ruckfreie Anteile bei Bremsbeschleunigung Positioniergruppenparameter	Basiseinheit Zeit
012B	seqc_homing_method	Referenzfahrt-Methode	Festlegung gemäß CANopen DSP 402
012C	ssel_ain0_x_per_volt	Lage Sollwertskalierung AIN0: Umdrehungen pro Volt	Basiseinheit Lage
012D	ssel_ain1_x_per_volt	Lage Sollwertskalierung AIN1: Umdrehungen pro Volt	Basiseinheit Lage

Nr.	Name	Bedeutung	Skalierung
012E	seqc_home_sw_zero_dist	Abstand vom Nullimpuls zum Bezug (End-	Basiseinheit Lage
		schalter, Referenzschalter) (wird nicht un-	
		terstützt)	
012F	seqc_home_sw_zero_min	Minimaler Abstand vom Nullimpuls zum	Basiseinheit Lage
		Bezug (Endschalter, Referenzschalter) (wird	
		nicht unterstützt)	
0130	pos_x_ref	Aktueller Lagesollwert	Basiseinheit Lage
0131	pos_control_n_korr	Ausgang vom Lageregler	Basiseinheit Drehzahl
0132	posi_rev_dist	Reversierstrecke (wird nicht unterstützt)	Basiseinheit Lage
0133	pos_sel_x_switch	Selektor Lageregler für Lagesollwert	keine
0134	pos_sel_n_switch	Selektor Sollwert für Drehzahlvorsteuerung	keine
0135	pos_can_x_ip	Lagesollwert im aktuell ausgewählten Posi- tionssatz	Basiseinheit Lage
0136	pos_bus0_delay	Anfahrverzögerung nach dem Start einer	Basiseinheit Zeit
0100	1.	Positionierung / guitig für alle Positionsziele	
0137	posc_x_diff_32b	Aktuelle Lagedifferenz zwischen aktuellem	Basiseinneit Lage
0100		Lagesoliwert und Lageistwert	
0138	pos_sel2_x_switch	Selektor Lageregler für Lagesollwert	keine
0139	pos_sel2_n_switch	Selektor Sollwert für Drehzahlvorsteuerung	keine
0140	can_node_id	Resultierende Knotennummer aus Basis und Offset	1 127
0141	can node id offset	Knotennummer-Offset durch digitale Ein-	0 63
		gänge	
0142	can_node_id_base	Basisknotennummer für CAN	0 127
0143	can_baudrate	Setzt die Baudrate für den CAN-Bus in	kBaud 125; 250; 500
		kBaud	
0144	can_comm_active	Aktiviert das CANopen- oder Protokoll	1: CANopen
0145	can_options	Setzt verschiedene Optionen	keine
0146	can_pdo_tx0_mapped	Identifier des gemappten SDO Objektes 0	keine
		(Senden)	
0147	can_pdo_tx1_mapped	Identifier des gemappten SDO Objektes 1 (Senden, Optional)	keine
0148	can_pdo_rx0_mapped	Identifier des gemappten SDO Objektes 0	keine
		(Empfangen)	
0149	can pdo rx1 mapped	Identifier des gemappten SDO Objektes 1	keine
		(Empfangen, Optional)	
014A	can svnc time slot	nominelles Intervall zwischen zwei SYNC-	keine
-		Frames auf dem CAN-Bus (wird für den	
		interpolated position mode benötigt)	
014B	can pos fact num	Zähler des Faktor für die Pos. Darstellung	keine
014C	can pos fact div	Nenner des Faktor für die Pos Darstellung	keine
014D	can val fact num	Zähler des Faktor für die DZ Darstellung	keine
014E	can vel fact div	Nenner des Faktor für die DZ Darstellung	keine
0145	can acc fact num	Zähler des Eaktor für die Beschl. Darstel	keine
0 T TL	uan_auu_iaui_iiuiii	lung	
0150	can acc fact div	Nenner des Faktor für die Beschl. Darstel-	keine
		lung	
0160	osc control	Steuerwort Oszilloskop. Betriebsmodi	keine
r		· · · · · · · · · · · · · · · · · · ·	

Nr.	Name	Bedeutung	Skalierung
0161	osc_status	Statuswort Oszilloskop, Betriebsmodi	keine
0162	osc_samples	Anzahl der Abtastungen	Anzahl der Sample-Werte pro Kanal
0163	osc_sample_time	Min. Abtastzeit zwischen zwei Samples	Basiseinheit Zeit
0164	osc_triggermask	Triggermaske Oszilloskop für digitale Trig- ger	erlaubt Sind '01L, '02L, '04L, usw., 'FFL
0165	osc_triggerconfig	Bitfeld Triggerkonfiguration	Keine
0166	osc_triggerlevel	Triggerschwelle ('analog') oder Pegel ('digi- tal')	entsprechend der aufzu- zeichnenden Größe
0167	osc_timebase	Anzahl der Zyklen bis zur nächsten Spei- cherung	Vielfache der Abtastzeit t(sampl) = osc_timebase * osc_sample_time
0168	osc_delay	Verschiebung des Triggers	Anzahl Samples Wert > 0 : Aufz. der dem Trigger nachgelagerten Er- eignisse Wert < 0 : Aufz. der dem Trigger vorgelagerten Ereig- nisse
0169	osc_data0	Funktionsnummer für Kanalaufzeichnung	Keine
016A	osc_KO_nr0	Freie KO-Adresse	KO-Nummer "freies KO"
016в	osc_KO_mask0	Optionale Maske, um in einem beliebigen Kommunikationsobjekt nicht benötigte Bits oder Wertebereiche ausblenden zu können.	keine
016C	osc_data1	Funktionsnummer für Kanalaufzeichnung	keine
016D	osc_KO_nr1	Freie KO-Adresse	KO-Nummer "freies KO"
016E	osc_KO_mask1	Optionale Maske, um in einem beliebigen Kommunikationsobjekt nicht benötigte Bits oder Wertebereiche ausblenden zu können.	keine
016F	osc_data2	Funktionsnummer für Kanalaufzeichnung	keine
0170	osc_KO_nr2	Freie KO-Adresse	KO-Nummer "freies KO"
0171	osc_KO_mask2	Optionale Maske, um in einem beliebigen Kommunikationsobjekt nicht benötigte Bits oder Wertebereiche ausblenden zu können.	keine
0190	ftd_pointer_course_prog	Zeiger auf einen Eintrag im Wegprogramm	keine
0191	ftd_line_course_prog	Eintrag einer Zeile im Wegprogramm	keine
0192	ftd_line_course_prog_akt	Zeiger auf aktuell bearbeitete Zeile im Weg- programm	keine
0193	ftd_line_course_prog_start	Stellt die Startzeilen für 1 und 2 ein	keine

11.7.1 Basiseinheiten

Tabelle 25: Liste der Basiseinheiten

	Größe	Darstellung	Auflösung	resultierender Wertebereich
--	-------	-------------	-----------	-----------------------------

Strom	32 Bit	1 / 2 ¹⁶ A	+- 2 ¹⁵ A
Beschleunigung	32 Bit	1 / 2 ⁸ Upm/s	+- 2 ²³ Upm/s
Drehzahl	32 Bit	1 / 2 ¹² Upm	+- 524.288 Upm
Lage	32 Bit	1 / 2 ¹⁶ U	+- 2 ¹⁵ U
DrehmKonstante	32 Bit	1 / 2 ¹² Nm/A	+- 524.288 Nm/A
Spannung	32 Bit	1 / 2 ¹⁶ Volt	+- 2 ¹⁵ Volt
Leistung	32 Bit	1 / 2 ⁸ VA	+- 2 ²³ VA
Verstärkung	32 Bit	1 / 2 ¹⁶	+- 2 ¹⁵
Zeitkonstante	32 Bit	0,1 µs = 10 ⁻⁷ s	430 s
Temperatur	16 Bit	1 / 2 ⁴ °C	+- 2 ¹¹ °C
32Bit-Faktor	32 Bit	1 / 2 ¹⁶	+- 2 ¹⁵
16Bit-Faktor (%)	16 Bit	1 / 2 ¹⁶	01 (0+100%)
Widerstand	32 Bit	1 / 2 ⁸	016,7 ΜΩ
Momentenänder.	32 Bit	1 / 2 ⁸ A /s	+- 2 ²³ A/s

	Komandowort (seqc_opmode)
Bit	Bedeutung
31	Regler Reset (Hardware Reset via commh)
30	Debug Modus 0 = aus; 1= ein
29	
28	Defaultparameter aus dem Programmspeicher laden (init!)
27	
26	
25	
24	
23	
22	
21	
20	
19	
18	Sollwertsperre (wird regelintern betätigt)
	Richtungsbit 0 =Linkslauf, 1 = Rechtslauf (dreht sowohl die DZ-Sollwerte als auch die Positionssollwerte
17	um), in der Betriebsart Drehmomentregelung auch die Drehmomentsollwerte
16	Quittieren Fehler
15	
14	
13	
12	Start Positionierung oder Referenzfahrt
11	
10	Drehrichtungsumkehr (invertierte Drehrichtung bei gleichen Sollwerten)
9	
8	
7	
6	Aktiviere Unterbetriebsart synchrones Positionieren
5	Aktiviere Referenzfahrt
4	Aktiviere Positionierung
3	Aktiviere Drehzahlregelung
2	Aktiviere Momentenregelung
1	Aktiviere Lageregelung
0	Reglerfreigabe

11.7.2 Bitbelegung Kommandowort / Statuswort / Fehlerwort

Statuswort (rs232_stat_sum)

Bit	Bedeutung
31	
30	
29	
28	
27	MOTID-Betrieb
26	
25	
24	Freigabe Regler und Endstufe INTERN
23	
22	
21	Automatischer Geberabgleich aktiv
20	Referenzfahrt wurde durchgeführt
19	Positive Richtung gesperrt
18	Negative Richtung gesperrt
17	Sammelfehlermeldung
16	Warnmeldung (kein Sammelfehler und keine Abschaltung)
15	Betriebsbereitschaft
14	Endstufe ist eingeschaltet
13	Drehzahlmeldung n_ist = (0 +/- n_mel_hyst)
12	SinCos Geber aktiviert
11	iit-Überwachung → Begrenzung auf Nennstrom; IIT-Motor / Servo
10	Positionierung gestartet (wird für die Dauer des eines IPO-Zyklus angemacht)
9	Drehzahlmeldung n_ist = (n_soll +/- n_mel_hyst)
8	1 = Drehzahlmeldung n_ist = (n_mel +/- n_mel_hyst)
7	
6	Restweg Positionierung erreicht (wird mit dem Start der Folgepositionierung genullt)
5	Ziel Erreicht Meldung (x_ist = x_soll +/- x_mel_hyst)
	Meldung Positionierung abgelaufen (x_soll = pos_x_soll) (wird mit dem Start der Folgepositionierung
4	genullt)
3	positiver Endschalter erreicht DIN8
2	negativer Endschalter erreicht DIN7
1	Referenzschalter erreicht
0	Referenzfahrt aktiv

Fehlerwort (low) (errh_err_field_0)

Bit	Bedeutung
31	
30	Fehler Endschalter
29	
28	Schleppfehlerüberwachung
27	Temperatur Endstufe 5°C unter Maximum
26	Temperatur Motor 5°C unter Maximum
25	I ² T bei 80%
24	
23	
22	
21	
20	
19	I²t-Fehler Regler (I²t bei 100%)
18	I ² t-Fehler Motor (I ² t bei 100%)
17	
16	Fehler SINCOS-Spursignale
15	Überspannung Zwischenkreis
14	Unterspannung Zwischenkreis
13	Überstrom Zwischenkreis / Endstufe
12	Fehler Offset Strommessung
11	
10	Fehler 24V-Versorgung (out of range)
9	Fehler 12V-Elektronikversorgung
8	Fehler 5V-Elektronikversorgung
7	Fehler Resolverspursignale / Trägerausfall
6	Fehler SINCOS-Spursignale
5	Fehler SINCOS-RS485-Kommunikation
4	Fehler SINCOS-Versorgung
3	Unter-/Übertemperatur Leistungselektronik
2	Übertemperatur Motor
1	
0	

Fehlerwort (high) (errh_err_field_1)

Bit Bedeutung

31	Fehler bei der Initialisierung
30	Checksummenfehler
29	Stack-Overflow
28	
27	Fehler in Vorberechnung Pos.
26	
25	Fehler Betriebsart
24	Fehler Positionsdatensatz
23	Fehler RS232-Kommunikation
22	Fehler CAN-Kommunikation
21	
20	
19	
18	
17	
16	
15	
14	
13	
12	
11	Fehler Wegprogramm Sprungziel
10	Fehler Wegprogramm unbekanter Befehl
9	
8	
7	Fehler Motoridentifikation
6	
5	
4	
3	Fehler Referenzfahrt
2	Time Out bei Schnellhalt
1	
0	

11.8 Erweiterte Möglichkeiten im Menü Anzeigeinheiten

11.8.1 Einstellungen der benutzerdefinierten Anzeigeeinheiten

Wenn Sie im Feld **Anzeigemodus** die Schaltfläche **Benutzerdefiniert** aktivieren, können Sie die Anzeigeeinheiten auf Ihre Applikation passend einstellen.

Anzeigeeinh	eiten Nachkommastellen Dir	ekteingabe	
-Anzeigemo	odus Standardwerte Benutzerdefiniert Direkteingabe	Translatorische Anwendung Vorschubkonstante 1.0000000000 Userdefiniert [] pro Umdrehung	Abbruch
⊡ Drehn	noment in Nm Faktor	Zeitbasis Zeitbasis Geschwindigkeit in [s]: [1,000000 Zeitbasis Beschleunigung in [s²]: [1,000000	
		Anzeigeeinheiten: Userdefiniert []	

Alle benutzerdefinierten Einheiten werden mit [..] angezeigt.

Im Feld Translatorische Anwendung Vorschubkonstante kann die Skalierung in userdefinierten Einheiten pro Umdrehung eingegeben werden.

Beispiel:

Sie haben einen Antrieb mit 1,76 Inch pro Umdrehung, ohne Getriebe. Sie möchten die Position in Inch eingeben. Unter **Vorschubkonstante** muss eine 1,76 eingetragen werden,

Weiterhin haben Sie die Eingabefelder Zeitbasis Geschwindigkeit und Zeitbasis Beschleunigung zur Verfügung.

Benutzen Sie das Feld **Zeitbasis Geschwindigkeit**, um eigene Geschwindigkeitseinheiten zu definieren.

Beispiel: (rotatorischer Betrieb)

Sie haben einen Antrieb mit 20 mm pro Umdrehung, ohne Getriebe. Sie möchten die Geschwindigkeit in mm/Minute eingeben. Unter **Vorschubkonstante** muss eine 20 eingetragen werden, unter **Zeitbasis Geschwindigkeit** der Wert 60. (60 Sekunden = 1 Minute) Benutzen Sie das Feld **Zeitbasis Beschleunigung**, um eigene Beschleunigungseinheiten zu definieren.

Beispiel:

Sie haben einen Antrieb mit 20 mm pro Umdrehung, ohne Getriebe. Sie möchten die Beschleunigung in (mm/Minute)/s eingeben. Unter **Vorschubkonstante** muss eine 20 eingetragen werden, unter **Zeitbasis Geschwindigkeit** der Wert 60. (1 Minute x 1s = $60 \times 1 \text{ s}^2 = 60 \text{ s}^2$)

11.8.2 Nachkommastellen

Als weitere Einstellmöglichkeit zu den Anzeigeeinheiten existiert die Auswahl der Nachkommastellen. Unter der Registerkarte **Nachkommastellen** im Menü <u>Optionen/Anzeigeeinheiten</u> kann die Anzahl der Nachkommastellen für die Weg-, Geschwindigkeits- und Beschleunigungseinheit (von 0 bis 5) eingestellt werden.

Anzeigeeinheiten					
Anzeigeeinheiten Nachkommastellen Di	rekteingabe				
Lage		X Abbruch			
Nachkommastellen:	3				
Geschwindigkeit					
Nachkommastellen:	3				
Beschleunigung					
Nachkommastellen:					

11.8.3 Direkteingabe der Weg-, Geschwindigkeits- und Beschleunigungseinheiten

In der Registerkarte **Direkteingabe** können Sie die Factor-Group der **Lage**, der **Geschwindigkeit** und der **Beschleunigung** direkt beschreiben, wenn Sie vorher in der Registerkarte **Anzeigeeinheiten** im Feld **Anzeigemodus** die Auswahl **Direkteingabe** angewählt haben.

Vorsicht! Nur für erfahrene Benutzer!

Die Direkteingabe der physikalischen Einheiten erlaubt eine tief greifende Änderung der Reglerparameter des Servopositionierreglers DIS-2.
Außerdem haben Sie die Möglichkeit, für die Anzeige des Parametrierprogrammes, eine Auswahl aus folgenden Einheiten zu treffen:

- Inkremente
- Grad
- Radiant
- Umdrehung
- Meter
- ✤ Millimeter
- Mikrometer
- Userdefiniert
- ✤ Keine Einheit

Hier zum Beispiel in Millimeter und hexadezimaler Darstellung:

Anzeigeeinheite	n Nachkommastellen	Direkteingabe			<u>0</u> K
Schreibzugriff r	ur bei Modus = "Direk	teingabe"		×	Abbruch
Factorgroup L	age				
Zähler:	1	Millimeter [mm]	-		
Nenner:	1	,			
Factorgroup G	eschwindigkeit				
Zähler:	3C	Millimeter pro Sekunde [mm/s]	-		
Nenner:	1				
-Factorgroup B	eschleunigung				
Zähler:	3C	Millimeter pro Quadratsekunde [mm/s²]	-		
	1				
∠anier:	1	Millimeter pro Quadratsekunde [mm/s²]	_		

ក

11.9 Wegprogramm: Beispiele

Anhand von Beispielen soll gezeigt werden, welche flexiblen Lösungen mit dem Wegprogramm möglich sind.

Die Eingabe der Wegprogramme ist im Kapitel 7.1 Wegprogramm erstellen beschrieben.

11.9.1 Beispiel 1: Lineare Verkettung von Positionen

Es sollen die Positionen 1 - 2 - 3 - 18 angefahren werden. Der Antrieb soll bei jeder Position 1 Sekunde anhalten. Danach soll das Wegprogramm stoppen.

Weg	programm								
Nr.	CMD	STOP	NEXT1	Pos/Zeile 1	NEXT2	Pos/Zeile 2	DOUT1	DOUT2	
0	Pos.	ignorieren	automatisch	1	ignorieren	-	Aus	Aus	
1	Pos.	ignorieren	automatisch	2	ignorieren	-	Aus	Aus	
2	Pos.	ignorieren	automatisch	3	ignorieren	-	Aus	Aus	
3	Pos.	ignorieren	automatisch	18	ignorieren		Aus	Aus	
4	Ende	ignorieren		-		-	-	-	
5	Ende	akzept.	1.7	-		-	-	-	
6	Ende	akzept.		(11-11-11-11-11-11-11-11-11-11-11-11-11-	-	-	-	
7	Ende	akzept.		-		-	-	-	
8	Ende	akzept.	- 10 <u>-</u> 10			-	<u>_</u>	-	-
Datei >> Programm Zeile editieren Modus Programm >> Datei									
	X <u>B</u> eende	n	We	gprogramm H	alt 🕜 NEXT2		2 🕗	Position: 1	6

Realisierung:

Implementierung:

 Die Anfahrtsverzögerung für die Positionen 1, 2, 3 und 18 muss bei der Programmierung der Zielpositionen parametriert werden.

11.9.2 Beispiel 2: Lineare Verkettung von Positionen mit Setzen eines digitalen Ausgangs

Es sollen die Positionen 1 - 2 - 3 - 18 angefahren werden. Der Antrieb soll bei jeder Position 1 Sekunde anhalten. Danach soll das Wegprogramm stoppen.

Wenn Position 3 erreicht ist, soll der digitale Ausgang DOUT1 für eine Sekunde auf HIGH gesetzt werden.

Realisierung:

Weg	programm								
Nr.	CMD	STOP	NEXT1	Pos/Zeile 1	NEXT2	Pos/Zeile 2	DOUT1	DOUT2	
0	Pos.	ignorieren	automatisch	1	ignorieren	-	Aus	Aus	
1	Pos.	ignorieren	automatisch	2	ignorieren	-	Aus	Aus	
2	Pos.	ignorieren	automatisch	3	ignorieren	-	Ziel	Aus	
3	Pos.	ignorieren	automatisch	18	ignorieren	-	Ziel	Aus	
4	Ende	ignorieren	- S-C	1 0 - 1 0	SHC .		-	-	
5	Ende	akzept.	-	-	-	-	-	-	
6	Ende	akzept.				-	-	-	
7	Ende	akzept.	1. - 1	-	-	-	-	-	
8	Ende	akzept.					-	-	
Da Pr	Datei >> Programm Zeile editieren Modus C Edit Programm >> Datei Wegprogramm aktiv NEXT1 DOUT1 Zeile 4 X Beenden Wegprogramm Halt NEXT2 DOUT2 Position: 16								

Implementierung:

- Die Positionen 1, 2, 3 und 18 werden mit einer Anfahrverzögerung von 1 Sekunde parametriert.
- Die Einstellung "Ziel erreicht" für DOUT1 muss in Zeile 3 und 4 stehen, da die Einstellung "Ein" oder "Aus" sofort übernommen wird, und somit das Signal nicht für die Sekunde ansteht. Sobald Position 18 angefahren wird, wird DOUT1 gelöscht.

11.9.3 Beispiel 3: Setzen und Abfragen von digitalen Ein- und Ausgängen; Endlosschleife

Zunächst soll DOUT1 für eine Sekunde auf HIGH gesetzt werden. Danach soll gewartet werden, bis NEXT1 aktiv ist.

Sobald dies geschieht, wird Position 16 endlos angefahren (3 Sekunden Anfahrverzögerung).

Realisierung:

Weg	programm								
Nr.	CMD	STOP	NEXT1	Pos/Zeile 1	NEXT2	Pos/Zeile 2	DOUT1	DOUT2	
0	Pos.	ignorieren	automatisch	0	ignorieren	-	Ein	Aus	
1	Sprung	ignorieren	automatisch	2	ignorieren	-	Ein	Aus	
2	Pos.	ignorieren	Pos. beenden	16	ignorieren	-	Aus	Aus	
3	Pos.	ignorieren	automatisch	16	ignorieren	-	Aus	Aus	1
4	Sprung	ignorieren	automatisch	3	ignorieren	-	Aus	Aus	
5	Ende	akzept.	-	-	-	-	-	-	1
6	Ende	akzept.	-	-	-	-		-]
7	Ende	akzept.	-	-	-	-	-	-	
8	Ende	akzept.	-	-	<u>0</u>	-	-	-	
Datei >> Programm Zeile editieren Modus C Edit Programm >> Datei Wegprogramm aktiv NEXT1 DOUT1 Zeile 4 X Beenden Wegprogramm Halt NEXT2 DOUT2 Position: 16									

Implementierung:

- Um das definierte Setzen von DOUT1 zu erreichen, wird ein Trick angewandt: Position 0 wird auf 0 Umdrehungen relativ gesetzt, mit einer Anfahrverzögerung von 1 Sekunde. Zunächst wird Position 0 "angefahren" und dabei DOUT1 auf HIGH gesetzt. Danach wird in Zeile 2 gesprungen.
- Um die Endlosschleife aufzubauen, wird in Zeile 4 ein Tabellenzeilensprung in Zeile 3 durchgeführt.

11.10 Timingdiagramme

In den folgenden Diagrammen sind einige typische Anwendungen des Servopositionierreglers DIS-2 mit den dazugehörigen Timings der digitalen Ein- und Ausgänge dargestellt. Da einige Zeiten vom Betriebszustand des Reglers abhängen, können z.T. nur Richtwerte angegeben werden. In diesen Fällen muss die Steuerung zusätzliche Status-Meldungen des DIS-2 abfragen.

Die in den Diagrammen angegebenen Zeiten haben eine Toleranz von +/- 100 µs. Diese Toleranz ist zusätzlich zu den in den Timing Diagrammen angegebenen Zeiten zu berücksichtigen !

Der Positionierregler DIS-2 besitzt eine Ablaufsteuerung mit einer Zeitbasis von 1,6 ms. Die Zustände der digitalen Ein- und Ausgänge werden zyklisch erfasst bzw. aktualisiert.

Die Zykluszeit der SPS oder Steuerung muss < $(1,6 \text{ ms} - 100 \mu \text{s}) = 1,5 \text{ ms}$ gewählt werden, damit die SPS alle Meldungen vom DIS-2 erfassen kann. Andererseits müssen alle Steuersignale von der SPS > $(1,6 \text{ ms} + 100 \mu \text{s}) = 1,7 \text{ ms}$ anstehen, damit sichergestellt ist, dass der DIS-2 diese Signale korrekt erkennt.

Beispiel: SPS mit t_{Cycle} = 1 ms \rightarrow Setzen der SPS-Ausgänge für mind. 2 x t_{Cycle} = 2 ms

11.10.1 Einschaltsequenz

11.10.2 Positionierung / Ziel erreicht

11.10.4 Fehler quittieren

11.10.5 Endschalter

Drehzahlistwert⁽¹⁾: Dauerhafte Sperrung der Drehrichtung durch den Endschalter. Drehzahlistwert⁽²⁾: Keine dauerhafte Sperrung der Drehrichtung durch den Endschalter.

11.11 Parametersatzverwaltung

11.11.1 Allgemeines

Damit der Servopositionierregler DIS-2 den Motor einwandfrei regeln kann, müssen die Kennwerte des Servopositionierreglers DIS-2 richtig eingestellt worden sein. Der einzelne Kennwert wird im Folgenden mit **Parameter** bezeichnet; die Gesamtheit aller Parameter für eine Servopositionierregler/Motor-Kombination mit **Parametersatz**.

Die nachfolgende Abbildung zeigt, wie Parametersätze verwaltet werden:

Abbildung 28: Online-Parametrierung

Der aktuelle Parametersatz des Servopositionierreglers DIS-2 ist im RAM-Speicher (RAM = Random Access Memory) vorhanden. Das RAM verliert seinen Speicherinhalt, sobald die Versorgungsspannung abgeschaltet wird. Um den Parametersatz dauerhaft zu sichern, kann er mittels des Befehls **Datei/Parametersatz/Parametersatz sichern** in den Speicher im Regler kopiert werden. Der Speicher verliert seinen Speicherinhalt auch dann nicht, wenn die Spannung abgeschaltet wird.

Bei jedem Reset-Vorgang am Servopositionierregler wird der Inhalt des FLASH in das RAM kopiert. Dieser Reset kann ausgelöst werden durch:

- Abschalten und Wiedereinschalten der Versorgungsspannung
- Aktivierung des Menü-Eintrags <u>Datei/Reset Servo</u>
- * Aktivierung der RESET-Schaltfläche in der Menüleiste des Parametrierprogramms

Der DIS-2 besitzt zusätzlich weiterhin einen **Default-Parametersatz**. Dieser Parametersatz ist fest in der Firmware verankert und kann nicht überschrieben werden. Falls eine Parametrierung aus unbekanntem Grund nicht erfolgreich ist, kann der Standardparametersatz geladen werden, um auf "geordneten Verhältnissen" aufzubauen. Die Aktivierung des Standardparametersatzes erfolgt durch Aktivierung des Menüeintrags <u>Datei/Parametersatz/D</u>efault-Parametersatz laden. Der Default-Parametersatz wird daraufhin in das FLASH und in das RAM kopiert.

11.11.2 Laden und Speichern von Parametersätzen

Es besteht die Möglichkeit, Parametersätze extern (d.h. auf Festplatte, Diskette usw.) zu speichern und zu verwalten. Dazu wird der Parametersatz vom Servopositionierregler DIS-2 gelesen und in einer Datei gespeichert oder aus einer Datei gelesen und im Servopositionierregler DIS-2 gespeichert.

Die Erweiterung der Parameterdateien auf PC-Seite lautet *.**DCO**. Das Lesen bzw. Schreiben der *.**DCO**-Dateien geschieht im Parametrierprogramm in den Menüpunkten:

- ✤ <u>Datei/Parametersatz/Datei >> Servo</u>: Übertragen einer *.DCO Datei vom PC zum Servo
- * Datei/Parametersatz/Servo >> Datei : Schreiben einer *.DCO Datei auf dem PC

Beachten Sie, dass Sie beim Schreiben eines Parametersatzes in eine Datei auf dem PC die Möglichkeit haben, die Felder **Motortyp** und **Beschreibung** auszufüllen. Weiterhin können Sie bis zu 100 Zeilen Kommentar anfügen, wenn Sie die Registerkarte **Kommentar** anwählen. Wir empfehlen dringend, Beschreibungen zu generieren, um einer späteren Verwechslung von Parametersätzen vorzubeugen. Auch sollte der Name des Parametersatzes sinnvoll gewählt werden, um ein späteres Auffinden zu erleichtern.

Bitte Verwenden Sie die Kommentarfelder um Informationen zu speichern.

*.DCO-Dateien können per Diskette, CD-ROM und/oder Email versandt werden.

11.11.3 Drucken von Parametersätzen

Sie können Parametersätze im Klartextformat drucken bzw. ansehen bzw. speichern, indem Sie den Menüpunkt **Datei/Parametersatz/Drucken** aktivieren. Sie erhalten folgendes Menü:

Drucken	
Positionen drucken Okeine OAlle Ovon 0 bis 63	X Abbru <u>c</u> h
Zusatzinformationen <u>S</u> eitenansicht	
<u>D</u> rucken	
Als Textdatei sichern	

In diesem Menü sind zunächst im Feld **Positionen drucken** die auszudruckenden Positionen zu wählen, die am Ende der Parameterliste ausgedruckt werden sollen.

Die Auswahl hat Auswirkungen auf den Umfang der Klartextausgabe. Zu erwarten sind:

*	keine	die Parameterliste wird ohne Positionssätze ausgegeben. Umfang: ca. 5 Seiten
*	alle	es werden alle 64 Positionssätze ausgegeben. Umfang: ca. 7 Seiten
*	vonbis	der Positionsbereich kann explizit. festgelegt werden
Die Sch	naltflächen	des Drucken Menüs haben folgende Bedeutung:

- Zusatzinformationen Aufruf des gleichnamigen Untermenüs.
- Seitenansicht Erstellung der Klartextausgabe und Anzeige auf dem Bildschirm.
- Drucken Erstellung der Klartextausgabe und Ausgabe auf dem Drucker.
- Als Textdatei sichern Erstellung der Klartextausgabe und Speicherung unter einem vom Benutzer definierten Namen. Defaultverzeichnis der Klartextausgabe ist das Unterverzeichnis \txt.

Bei der Erstellung der Klartextausgabe für Seitenansicht und Drucken wird im Unterverzeichnis \txt die Datei \$\$\$.txt geschrieben.

Zusatzinformationen

In diesem Menü kann der Benutzer zusätzliche Hinweise zum Parametersatz eingeben. Die Informationen werden in die Klartextausgabe übernommen. Die betrifft insbesondere die Datumsangabe, die abweichend vom aktuellen Datum festgelegt werden kann.

urtrag:	Auftrag	
Commentar1:	kommentar 1	
Commentar2:	Kommentar 2	
lotordaten:	Motor_data	
)atum:	08.01.2005 17:46:30	Andern

Die Felder **Auftrag, Kommentar1/2, Motordaten** werden ohne Änderung in die Klartextausgabe übernommen. Sie sind wie folgt auszufüllen:

Feld	Inhalt
Auftrag	Kennung des Auftrags/Projekts wofür der Parametersatz erstellt
	wurde
Kommentar1, Kommentar 2	Besonderheiten des Parametersatzes
Motordaten	Kennung des Motordatensatzes (aus Datei motor.ini)

Aufgrund der Formatierung sollte jeder Eintrag nicht länger als eine halbe Zeile (ca. 40 Zeichen) sein.

Als Datum der Klartextausgabe wird per Default das aktuelle Datum ausgegeben. Durch Anklicken der Ändern Funktion wird das Datumsfeld editierbar und kann verändert werden. Dieses Datum wird in die Klartextausgabe übernommen.

Seitenansicht

Nach Auswahl des gleichnamigen Schaltflächen im Drucken Menü wird die Klartextausgabe erstellt und die Seitenansicht wird angezeigt. Sie bietet eine Vorschau auf die zu erwartende Druckerausgabe.

Als Textdatei sichern

Über die Schaltfläche **Als Textdatei sichern** können Sie die Druckausgabe auch als *.txt-Datei auf Festplatte sichern und weiterverarbeiten (z.B. Versand per E-Mail).

Die Textdateien werden im Unterverzeichnis TXT des Parametrierprogramms gespeichert.

Parametersätze können im Online- wie auch im Offline-Betrieb gedruckt werden.

11.12 Offline-Parametrierung

Ob momentan die Offline- oder die Online-Parametrierung aktiv ist, erkennen Sie in der Symbolleiste unterhalb der Menüleiste:

Tabelle 26: Online-Offline-Aktivierung

Der jeweils aktive Modus ist durch grüne Farbe hervorgehoben.

Das Parametrierprogramm bietet die Möglichkeit, auf Parametersätze zuzugreifen, auch wenn keine serielle Kommunikation zum Servopositionierregler DIS-2 vorhanden ist. Voraussetzung ist allerdings das Vorhandensein einer entsprechenden *.DCO-Datei (Siehe *Kapitel 11.11.2 Laden und Speichern von Parametersätzen*).

Es besteht die Möglichkeit

- Reglerparameter aus einer *.DCO-Datei zu lesen.
- Reglerparameter zu ändern.
- geänderte Werte in der gleichen oder einer anderen *.DCO-Datei zu speichern..
- Parametersätze drucken. (Siehe hierzu Kapitel 11.11.3 Drucken von Parametersätzen).

Um die getätigten Änderungen wirksam werden zu lassen, muss der modifizierte Parametersatz in den Servopositionierregler DIS-2 geladen werden (Siehe *Kapitel 11.11.2 Laden und Speichern von Parametersätzen*).

Das untere Schaubild zeigt das Prinzip der Offline-Parametrierung:

Abbildung 29: Offline-Parametrierung

Um die Offline-Parametrierung zu aktivieren, klicken Sie den Menüpunkt

Optionen/Kommunikation/Offline-Parametrierung oder das Offline Symbol in der Symbolleiste an. Sie werden gefragt, welche *.DCO-Datei geöffnet werden soll. Wählen Sie eine entsprechende Datei aus.

GEFAHR!

Wenn Sie eine DCO-Datei für einen anderen Gerätetyp weiter verwenden, sollten unbedingt die Einstellungen für Nennstrom, Maximalstrom, Winkelgeberoffset, Phasenfolge, Polzahl, Stromregler und Drehzahlregler überprüft werden, da die Gefahr besteht, den Servopositionierregler/Motor zu zerstören! Während der Offline-Parametrierung hat das Parametrierprogramm ein Verhalten, dass von der Online-Parametrierung abweicht:

- Sestimmte Menüs (z.B. Firmware-Download) sind gesperrt.
- Das Menü <u>Datei/Parametersatz</u> hat andere Untermenüs:
 - Datei öffnen
 - Datei sichern
 - Datei sichern <u>u</u>nter...
- Beim Verlassen des Programms wird gefragt, ob die gerade geöffnete Parameterdatei gesichert werden soll.

Die Offline-Parametrierung wird beendet durch Anklicken des Menüpunktes

Optionen/Kommunikation/Online-Parametrierung oder durch das Klicken auf das Online Symbol in der Symbolleiste.

11.13 Firmware in den DIS-2 laden / Firmware-Update

Die Firmware ist das "Betriebsprogramm" des Servopositionierreglers DIS-2. Diese werden bereits mit einer Firmware ausgeliefert. Folgende Umstände können das Laden einer neuen Firmware notwendig machen:

- Update auf eine neue Firmware-Version.
- Laden einer Firmware mit kundenspezifischen Funktionen, um zusätzliche Funktionen nutzbar zu machen.
- Unvollständige Firmware (beispielsweise aufgrund eines abgebrochen Firmware-Downloads).

Das Parametrierprogramm besitzt im Zuge der Produktweiterentwicklung unter Umständen Optionen, die nur mit einer entsprechend weiter entwickelten Firmware-Version zusammenarbeiten.

Falls der Servopositionierregler DIS-2 keine oder nur eine unvollständige Firmware-Version besitzt erscheint folgendes Fenster:

Falls die korrekte Firmware bereits im Servopositionierreglers DIS-2 vorhanden ist, erscheint die Fehlermeldung nicht. In diesem Fall kann das folgende Kapitel übersprungen werden!

Sie können die aktuelle, sich im Regler befindende Firmware Version auslesen, in dem Sie im Menü Info/Info die Registerkarte Firmware / Hardware öffnen.

11.13.1 Firmware laden

Über das Menü Datei/Firmware-Download kann eine neue Firmware geladen werden.

Das Laden einer neuen Firmware überschreibt den im Servopositionierregler gespeichertem Parametersatz. Deswegen erscheint zunächst die Meldung:

Hier können Sie wählen, ob Sie zunächst noch Ihren Parametersatz auf dem PC sichern wollen. Wenn Sie die Schaltfläche **Ja** wählen, so wird das Menü für **Parametersatz sichern** geöffnet.

Danach erscheint folgendes Auswahlmenü:

- 1. Wählen Sie die zu ladende Firmware aus, und klicken Sie dann auf Öffnen.
- 2. Als nächstes erscheint ein Fenster zur Auswahl der Übertragungsgeschwindigkeit (Baudrate):

3. Versuchen Sie es zunächst mit einer Baudrate von 115200 Baud. Falls sich Probleme in der Datenübertragung ergeben (Fehlermeldungen), müssen Sie die Baudrate im nächsten Versuch reduzieren. Ein erfolgreicher Firmware-Download wird durch die untenstehende Meldung angezeigt:

Falls der Firmware-Download nicht erfolgreich war, wird dies durch die Meldung **Fehler beim Firm**ware-Download angezeigt.

Ursache ist meist ein Kommunikationsfehler bei der Übertragung der Daten in den

Servopositionierregler DIS-2. Wiederholen Sie den oben beschriebenen Vorgang mit einer kleineren Baudrate.

11.14 Technische Daten

11.14.1 Umgebungsbedingungen und Qualifikation

Parameter	Werte
Zulässige Temperaturbereiche	Lagertemperatur: -25°C bis +70°C
	Betriebstemperatur: 0°C bis +50°C +50°C bis +70°C mit Leistungsreduzierung 2%/K Temperaturabschaltung bei ca. 80°C
Zulässige Aufstellhöhe	Bis 1000 m über NN, 1000 bis 4000 m über NN mit Leistungsreduzierung
Luftfeuchtigkeit	Rel. Luftfeuchte bis 90%, nicht betauend
Schutzart	IP54, je nach Montageart bis zu IP67.
Verschmutzungsklasse	1
CE-Konformität: Niederspannungsrichtlinie: EMV-Gesetz:	Nicht anwendbar EN 61 800 - 3
Weitere Zertifizierungen	UL in Vorbereitung

11.14.2 Abmessung und Gewicht

Parameter	Werte
Abmessungen (H*B*T)	65 x 90 x 110 mm (Ohne Gegensteckverbinder)
Gewicht	ca. 500 g

11.14.3 Leistungsdaten

Parameter	Werte		
Zwischenkreisspannung	0 V 60 V DC (48 V DC nenn / 15 A nenn) ¹⁾		
24V Versorgung	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
Anschluss Bremswiderstand	$R_{BR} \geq 4,7~\Omega$ / $P_{nom} = 20~W200~W$ (nur im DIS-2 48/10-FB vorhanden!)		
Brems-Chopper DIS-2 FB	Schaltschwelle EIN: U_{CHOP_EIN} = 60 V [± 5%]Schaltschwelle AUS: U_{CHOP_AUS} = 55 V [± 5%]		

¹⁾ Es wird eine externe Sicherung 15 A benötigt.

²⁾ Stromaufnahme des DIS-2 48/10 ohne Zusatzbeschaltung

³⁾ maximal zulässige Stromaufnahme einer evtl. vorhandenen Haltebremse

⁴⁾ maximale Stromaufnahme bei Belastung der DOUT0 bis DOUT2 sowie des CAN-Busses

Parameter	Werte			
Digitaler Sensor	Öffnerkontakt:	$R_{Kalt}{<}500~\Omega$	$R_{\rm Hei\beta} > 100 \; k\Omega$	
Analoger Sensor	Silizium Temperaturfühler, KTY Serie			
	KTY81-2x0; KTY82-2x0	$R_{25}\approx 2000~\Omega$		
	KTY81-1x0; KTY81-2x0	$R_{25}\approx 1000~\Omega$		
	KTY83-1xx	$R_{25}\approx 1000~\Omega$		
	KTY84-1xx	$R_{100} \approx 1000 \ \Omega$		

11.14.4 Motortemperaturüberwachung

11.14.5 Motoranschlussdaten [X301 – X303]

Parameter	Werte	
Daten für den Betrieb an $48V / T_{Gehäuse max.} = 50^{\circ}C$		
Ausgangsleistung	500 VA	
Max. Ausgangsleistung für 2 s	1500 VA	
Ausgangsstrom	$\begin{array}{l} 15 \ A_{eff} @ \ T_{PowerStage} &\leq 50^{\circ}C \\ 10 \ A_{eff} @ \ T_{PowerStage} &\leq 70^{\circ}C \end{array}$	
Max. Ausgangsstrom für 2 s	$\begin{array}{l} 40 \ A_{eff} @ \ T_{PowerStage} \ \leq 50^{\circ}C \\ 32 \ A_{eff} @ \ T_{PowerStage} \ \leq 70^{\circ}C \end{array}$	
Taktfrequenz	10 kHz / 20 kHz	

11.14.6 Resolver [X2]

Parameter	Wert
Geeignete Resolver	Industriestandard
Übersetzungsverhältnis	0,5
Trägerfrequenz	10 kHz
Auflösung	> 12 Bit (typ. 15 Bit)
Drehzahlauflösung	ca. 4 min ⁻¹
Absolutgenauigkeit der Winkelerfassung	< 10′
Max. Drehzahl	16.000 min ⁻¹

Parameter	Wert	
Geeignete Hallsensoren	HAL400 (Micronas), SS495A (Honeywell) und andere Typ: differentieller analoger Ausgang, $V_{CM} = 2.0 \text{ V}3.0 \text{ V}$ Signalamplitude: max. 4,8 V_{ss} differentiell ¹⁾	
Auflösung	> 12 Bit (typ. 15 Bit)	
Verzögerungszeit Signalerfassung	$< 200 \ \mu s$	
Drehzahlauflösung	ca. 10 min ⁻¹	
Absolutgenauigkeit der Winkelerfassung	< 30′	
Max. Drehzahl	16.000 min ⁻¹	

11.14.7 Analoge Hallgeberauswertung [X2]

¹⁾ Andere Signalpegel auf Anfrage als kundenspezifische Version, bitte nehmen Sie Kontakt zu Ihrem Vertriebspartner auf.

11.14.8 Hiperface Encoderauswertung [X2]

Parameter	Wert	
Geeignete Encoder	Stegmann Hiperface SCS / SCM60 ; SRS / SRM50 ; SKS36 für andere Typen nehmen Sie bitte Kontakt zu Ihrem Vertriebspartner auf.	
Auflösung	Bis zu 16 Bit (Abhängig von der Strichzahl)	
Verzögerungszeit Signalerfassung	$< 200 \ \mu s$	
Drehzahlauflösung	ca. 4 min ⁻¹	
Absolutgenauigkeit der Winkelerfassung	< 5'	
Max. Drehzahl	6.000 min ⁻¹	

11.14.9 Inkrementalgeberauswertung [X2] – nur DIS-2 48/10-FB

Parameter	Wert
Strichzahl	Programmierbar 32 bis 1024 Striche pro Umdrehung
Anschlusspegel	5 V differentiell / RS422-Standard
Versorgung Geber	+5 V / 100 mA max.
Eingangsimpedanz	$R_i \approx 1600 \ \Omega$
Grenzfrequenz	$f_{Grenz} > 100 \text{ kHz} \text{ (Striche/s)}$

Parameter	Wert
Geeignete Hallsensoren	Hallsensoren mit +5V Versorgung, 120° Phasenversatz, open collector oder push-pull Ausgang; $i_{out} > 5$ mA
Auflösung	6 Schritte pro elektrischer Umdrehung
Verzögerungszeit Signalerfassung	< 200 µs
Drehzahlauflösung	Abhängig von der Polpaarzahl des Motors
Max. Drehzahl	3.000 min ⁻¹ bei einem Motor mit zwei Polpaaren

11.14.10 Six Step Hallsensoren und Blockkommutierung [X2]

11.14.11 RS232 [X1]

Parameter	Wert
RS232	gemäß RS232-Spezifikation, 9600 Bit/s bis 115,2 k Bit/s

11.14.12 CAN-Bus [X1]

Parameter	Wert	
CANopen Controller	TJA 1050, Full-CAN-Controller, 1M Bit/s; einstellbar sind max. 500kBit/s	
CANopen Protokoll	gemäß DS301 und DSP402	

11.14.13 Analoge Ein- und Ausgänge [X1]

Parameter	Werte	
Hochauflösende Analogein- gänge	±10V Eingangsbereich, 12 Bit, differentiell, < 250μs Verzögerungszeit, Eingangsschutzschaltung bis zu 30V	
Analogeingang: AIN0 / #AIN0	Analogeingang, kann genutzt werden um Strom- oder Drehzahlsollwerte vorzugeben. (Mehrfachbelegung mit DIN0 und DIN1)	
Analogeingang: AIN1 / #AIN1	Analogeingang, kann genutzt werden um Strom- oder Drehzahlsollwerte vorzugeben. (Mehrfachbelegung mit DIN2 / DOUT1 und DIN3/ DOUT2)	
Analoger Ausgang: AMON0	0 10V Ausgangsbereich, 8 Bit Auflösung, $f_{Grenz} \approx 1 \text{kHz}$	

11.14.14	Digitale	Ein- und	Ausgänge	[X1]
----------	----------	----------	----------	------

Parameter	Wert		
Signalpegel	24V (8V30V) aktiv high, konform mit EN 1131-2		
Logikeingänge allgemein DIN0 DIN1	Bit 0 \ Bit 1, \ Zielauswahl für die Positionierung		
DIN2 DIN3	Bit 2, / 16 Ziele aus Zieltabelle wählbar Bit 3 /		
DIN4 DIN5	 Bit 4 \ \ Zielgruppenauswahl für die Positionierung / 4 Gruppen mit separaten Positionierparametern Bit 5 / (z.B. Geschw., Beschleunigungen, Positioniermodus) wählbar. 		
DIN6	Steuersignal Start Positionierung		
DIN7	Endschaltereingang 0		
DIN8	Endschaltereingang 1		
DIN9	Endstufenfreigabe bei einer steigenden Flanke; Fehler quittieren bei einer fallenden Flanke.		
Logikausgänge allgemein	24V (8V30V) aktiv high, Kurzschlussfest gegen GND		
DOUT0	betriebsbereit	24 V, max. 20 mA	
DOUT1	frei konfigurierbar, verwendbar als Encoderausgangssignal A (Pin ist Mehrfachbelegt mit DIN2 und AIN1)	24 V, max. 20 mA	
DOUT2	frei konfigurierbar, verwendbar als Encoderausgangssignal B (Pin ist Mehrfachbelegt mit DIN3 und #AIN1)	24 V, max. 20 mA	
DOUT3 [X3]	Haltebremse	24 V, max. 700 mA	

11.14.15 Inkrementalgeberausgang [X1]

Parameter	Wert
Ausgangsstrichzahl	Programmierbar 32 / 64 / 128 / 256 / 512 / 1024 Striche pro Umdrehung
Anschlusspegel	24V / max. 20 mA
Ausgangsimpedanz	$R_a \approx 300 \ \Omega$
Grenzfrequenz	$\label{eq:Grenz} \begin{split} f_{Grenz} &> 100 \text{ kHz (Striche/s); } f_{Grenz} \text{ hängt ab von der Kabellänge, Daten} \\ gemessen mit R_{Load} &= 1 \text{ k}\Omega \text{ und } C_{Load} = 1 \text{ nF (entspricht einer Kabellänge von 5m)} \end{split}$

11.15 Mechanische Installation

11.15.1 Wichtige Hinweise

- Der Servopositionierregler DIS-2 wurde f
 ür die direkte Montage auf den Motor entwickelt.
- Optional ist es möglich Ihn vom Motor getrennt zu betreiben. In diesem Fall werden zusätzliche Verbindungskabel zwischen Motor und Servopositionierregler DIS-2 benötigt. Diese sollten so kurz wie möglich sein, die Maximallänge ist 1 m.
- Die Maximal erlaubte Temperatur des Gehäuses beträgt 70°C um die spezifizierte Lebensdauer der Elektronik zu gewährleisten.
- Das Anschlusskabel an X1 sollte nahe dem Servopositionierregler DIS-2 fixiert werden, um die Zuverlässigkeit der Verkablung zu erhöhen.
- Einbaufreiräume:

Für eine ausreichende Belüftung des Geräts ist unter und über dem Gerät ein Abstand von jeweils 100 mm anderen Baugruppen einzuhalten.

DIS-2 Montageoptionen:

- a) Direkt auf den Motor montiert Standard
- b) Vom Motor getrennt Die Verfügbarkeit klären Sie bitte mit Ihrem Vertragshändler.

11.15.2 Position und Anschluss der Steckverbinder

Der Servopositionierregler DIS-2 hat die folgenden Anschlüsse:

- X1 ist der einzige IO Steckverbinder, welcher nach Außen geführt ist. Er enthält digitale und analoge Ein- und Ausgänge, sowie die Spannungsversorgung, das CANopen Interface und einige Debug-Signale.
- An X2 werden die Winkelgeber angeschlossen. An diesem Steckverbinder werden folgende Winkelgeber unterstützt:
 - Resolver
 - > Analoge Hallsensoren (auf Anfrage)
 - Stegmann HIPERFACE
 - Digitale Hallsensoren (Six-Step-Geber)
- Die Haltebremse wird an X3 angeschlossen.
- ✤ X301, X302, X303 sind die Anschlüsse f
 ür die drei Motorphasen U, V and W.
- * X8 ist ein Erweiterungssteckplatz für zukünftige Technologiemodule.

Abbildung 30: Anordnung Steckverbinder DIS-2 – Draufsicht der Elektronikbaugruppe

11.15.3 Gehäuseabmessungen

Abbildung 31: Gehäuseabmessungen

11.15.4 Montage

Der Servopositionierregler wird mit einer Dichtung direkt auf den Motor montiert. Die Montagefläche am Motor sollte eine glatte Oberfläche mit einer umlaufenden Nut haben, um einen guten Schutz gegen Spritzwasser zu erreichen. Eine Schutzklasse von IP67 ist bei einer guten mechanischen Konstruktion möglich.

Abbildung 32: DIS-2 Applikationsbeispiel– Synchron Servo Motor im Leistungsbereich 500W mit Servopositionierregler DIS-2 und Getriebe für eine Lenkanwendung.

11.16 Steckverbinder am DIS-2 48/10

11.16.1 Anschluss: Spannungsversorgung und I/O [X1]

- Ausführung am Gerät: AMP Junior Timer 1-963215-1
- Gegenstecker [X1]:

AMP 1-963217-1 / Kontakte: 929938-1

Abbildung 33: Pinnummerierung X1 DIS-2 48/10

Tabelle 27: Belegung Steckverbinder [X1]

Pin Nr.	Bezeichnung	Wert	Spezifikation
1	DIN9	0 V24 V	Dig. Eingang: Endstufe einschalten
2	DIN7	0 V24 V	Dig. Eingang: Endschalter 0 (Sperrt n > 0)
3	CANHI (DIN4)	0 V24 V	CAN high (Dig. Eingang: Positioniergruppenselektor Bit 0)
4	AIN1 (DIN2) ((DOUT1))	-10 V10 V (0 V24 V) ((0 V24 V))	Anal. Eingang 1: Differenzieller Analogeing. mit #AIN1 (Dig. Eingang: Positionierzielselektor Bit 2) ((Dig. Ausgang: Frei programmierbar / Encoder Aus- gang Spur A))
5	AIN0 (DIN0)	-10 V10 V	Anal. Eingang 0: Differenzieller Analogeing. mit #AIN0 (Dig. Eingang: Positionierzielselektor Bit 0)
6	RxD	+/-10 V	Receive Signal, RS232 Spezifikation
7	GND	0 V	Gemeinsames Groundpotential für Zwischen- kreisspannung und 24V Logikversorgung.
8	ZK+	+48 V / 15 A _{nom.}	Zwischenkreisversorgung (DC-Bus)
9	DOUT0 / READY	0 V / 24 V	Betriebsbereit
10	DIN8	0 V24 V	Dig. Eingang: Endschalter 1 (Sperrt n < 0)
11	CANLO (DIN5)	0 V24 V	CAN low (Dig. Eingang: Positioniergruppenselektor Bit 1)
12	#AIN1 (DIN3) ((DOUT2))	-10 V10 V (0 V24 V) ((0 V24 V))	Negativer anal. Eingang 1: Differenzieller Analogein- gang mit AIN1 (Dig. Eingang: Positionierzielselektor Bit 3) ((Dig. Ausgang: Frei programmierbar / Encoder Aus- gang Spur B))
13	#AIN0 (DIN1)	-10 V10 V	Negativer anal. Eingang 0: Differenzieller Analogein- gang mit AIN0 (Dig. Eingang: Positionierzielselektor Bit 1)
14	TxD	+/-10 V	Transmit Signal, RS232 specification
15	AMON0 (DIN6)	0 V10 V; 2 mA (0 V24 V)	Analogmonitor 0 (Dig. Eingang: Start Positionierung)
16	+24V Logik	+24 V / I _{Logik} = 200 mA1000 mA	24 V Spannungsversorgung für die interne Logik und IOs. Gemeinsamer Ground mit dem Zwischenkreis

11.16.2 Anschluss: Winkelgeber [X2]

- Ausführung am Gerät:Gegenstecker [X2]:
- JST No. B16B-PHDSS JST No. PHDR-16VS / Kontakte: JST No. SPHD-002T-P0.5

Abbildung 34: Anschluss Winkelgeber

Tabelle 28: Bele	gung Steckverbinder	[X2]
------------------	---------------------	------

Pin	Nr.	Bezeichnung	Wert	Spezifikation
1		GND	0 V	Bezugspotential für Inkrementalgeber / Analoge Hall- sensoren / Stegmann Hiperface Geber
	2	GND	0 V	Bezugspotential für Hallsensoren und / oder Motor- temperatursensor
3		+5V	+5 V / 100 mA	+5 V Versorgung für lineare Hallsensoren oder Inkrementalgeber
	4	+5V	+5 V / 100 mA	+5 V Versorgung für Hallsensoren
5		COS A	1.5 V _{RMS,diff} / R _i > 10 kΩ	Resolver: Anschluss an Resolver Signal S1 Andere: Anschluss an Inkrementalgeber Spur A
	6	HALL_U	0 V / 5 V R _i = 5 kΩ	Phase U Hallsensor für die Kommutierung Eingang mit 4,7 k Ω pull-up an +5 V
7		#COS #A	1.5 V _{RMS,diff} / R _i > 10 kΩ	Resolver: Anschluss an Resolver Signal S3 Andere: Anschluss an Inkrementalgeber Spur #A
	8	HALL_V	0 V / 5 V R _i = 5 kΩ	Phase V Hallsensor für die Kommutierung Eingang mit 4,7 kΩ pull-up an +5 V
9		SIN B	1.5 $V_{\text{RMS,diff}}$ / R _i > 10 k Ω	Resolver: Anschluss an Resolver Signal S2 Andere: Anschluss an Inkrementalgeber Spur B
	10	HALL_W	0 V / 5 V R _i = 5 kΩ	Phase W Hallsensor für die Kommutierung Eingang mit 4,7 k Ω pull-up an +5 V
11		#SIN #B	1.5 V _{RMS,diff} / R _i > 10 kΩ	Resolver: Anschluss an Resolver Signal S4 Andere: Anschluss an Inkrementalgeber Spur #B
	12	MTEMP	0 V / 3.3 V R _i = 2 kΩ	Motortemperaturfühler, Öffner, PTC, oder analoger Sensor KTY Serie; verbunden mit GND
13		REF N	3 V _{RMS,diff.} max. 50 mA _{RMS}	Resolver: Anschluss an Resolver Signal R1 Andere: Anschluss an Inkrementalg. Spur N / DATA
	14	+12V	+12 V / 100 mA	+12 V power supply for Stegmann Hiperface encoder
15		#REF #N	3 V _{RMS,diff.} max. 50 mA _{RMS}	Resolver: Anschluss an Resolver Signal R2 Andere: Anschluss an Inkrementalg. Spur #N / #DATA
	16	n.c.	-	-

11.16.3 Anschluss: Motor [X301 – X303]

- Ausführung am Gerät:
- Gegenstecker [X301 X303]:

6.3 mm FAST-ON männlich 6.3 mm FAST-ON weiblich (Außen Isoliert)

Abbildung 35: Anschluss Motorkabel

Tabelle 29: Beleg	ung Steckverbinder	[X301 – X303]
-------------------	--------------------	---------------

X30x	Bezeichnung	Wert	Spezifikation			
X301	PHASE_U	3 x 0 V48 V				
X302	PHASE_V	15 A _{RMS,nom}	Anschluss der drei Motorphasen			
X303	PHASE_W	40 A _{RMS,max} 0 Hz200 Hz	Anschluss der drei Motorphäsen			

11.16.4 Anschluss: Haltebremse [X3]

- ✤ Ausführung am Gerät:
- Gegenstecker [X3]:
- JST No. B02B-XASK-1

JST No. XAP-02V-1 / Kontakte: JST No. SXA-001T-P0.6

Abbildung 36: Anschluss Haltebremse

Tabelle 30: Belegung Steckverbinder [X3]

	_		~
Pin Nr.	Bezeichnung	Wert	Spezifikation
	Deserving		

*

1	DOUT3	0 V / 24 V max. 700 mA	Digitaler Ausgang: (High aktiv) für die Haltebremse, Speisung erfolgt intern über die 24 V Logikversor- gung.
2	GND	0 V	Bezugspotential für die Haltebremse

Anschluss: Erweiterungssteckplatz [X8] 11.16.5

- Ausführung am Gerät:
- 2 x 8 RM 2.54 mm weiblich Gegenstecker [X2]:
 - 2 x 8 RM 2.54 mm männlich

Abbildung 37: Anschluss Technologiemodul

Tabelle 31: Belegung Steckverbinder [X8]

Pin	Nr.	Bezeichnung	Wert	Spezifikation						
1		GND		Bezugspotential						
	2	+3.3 V		Spannungsversorgung Technologiemodul max. 100 mA (zusammen mit 5 V)						
3		MOSI		SPI Serial Master Output						
	4	SCLKB		SPI Serial Clock (max. 20 MBit/s)						
5		MISO		SPI Serial Master Input						
	6	#SS		SPI Slave Select						
7		#IRQA								
	8	#IRQB	Alle Signale mit	IO-7 Interruptsignale des DSP						
9		#RESET	3,3 V CMOS	RESET-Signal (3,3V-RESET-Controller)						
	10	CLK40	Logikpegei	System clock des DSP						
11		AN1		Optionale analogo Eingänge des DSD (0.)(-2.2.)()						
	12	AN5		Optionale analoge Eingange des DSP (0 V3.3 V)						
13		RxD		Optionale asynchrone Serielle Schnittstelle						
	14	TxD		(3.3 V Pegel, max. 115 kBit/s)						
15		GND		Bezugspotential						
	16	+5 V		Spannungsversorgung Technologiemodul max. 100 mA (zusammen mit 3.3 V)						

11.17 Steckverbinder am DIS-2 48/10-IC

11.17.1 Anschluss: Spannungsversorgung und I/O [X1]

- Ausführung am Gerät: Phoenix PLUSCON VARIOCON mit insgesamt 18 Kontakten
 - Phoenix PLUSCON VARIOCON Bausatz,
 - bestehend aus: 1x VC-TFS2 2x VC-TFS8 1x VC-TR2/3M

1x VC-MEMV-T2-Z

1x VC-EMV-KV-PG21-(11,5-15,5/13,5)

Abmessungen ca. L x B x H = 86 mm x 80 mm x 32 mm

C	В				A				
S	1	8	7	6	5	8	7	6	5
2		4	3	2	1	4	3	2	1

Abbildung 38: Pinnummerierung X1 DIS-2 48/10-IC

 Tabelle 32: Belegung Steckverbinder [X1]

Gegenstecker [X1]:

Pin Nr.	Bezeichnung	Wert	Spezifikation
A1	DOUT0 / READY	0 V / 24 V	Betriebsbereit
A2	DIN8	0 V24 V	Dig. Eingang: Endschalter 1 (Sperrt n < 0)
A3	CANLO (DIN5)	0 V24 V	CAN low (Dig. Eingang: Positioniergruppenselektor Bit 1)
A4	#AIN1 (DIN3) ((DOUT2))	-10 V10 V (0 V24 V) ((0 V24 V))	Inv. Analogeingang 1: Differenzieller Analogeingang mit AIN1 (Dig. Eingang: Positionierzielselektor Bit 3) ((Dig. Ausgang: Programmierbar / Encoder-Ausg. Spur B))
A5	DIN9	0 V24 V	Dig. Eingang: Endstufe einschalten
A6	DIN7	0 V24 V	Dig. Eingang: Endschalter 0 (Sperrt n > 0)
A7	CANHI (DIN4)	0 V24 V	CAN high (Dig. Eingang: Positioniergruppenselektor Bit 0)
A8	AIN1 (DIN2) ((DOUT1))	-10 V10 V (0 V24 V) ((0 V24 V))	Analogeingang 1: Differenzieller Analogeingang mit #AIN1 (Dig. Eingang: Positionierzielselektor Bit 2) ((Dig. Ausgang: Programmierbar / Encoder-Ausg. Spur A))
B1	#AIN0 (DIN1)	-10 V10 V	Inv. Analogeingang 0: Differenzieller Analogeingang mit AIN0 (Dig. Eingang: Positionierzielselektor Bit 1)
B2	TxD	+/-10 V	Transmit Signal, RS232 specification
В3	AMON0	0 V10 V; 2 mA	Analogmonitor 0
B4	GND	0 V	Bezugspotential für die Steuersignale
В5	AIN0 (DIN0)	-10 V10 V	Analogeingang 0: Differenzieller Analogeingang mit #AIN0 (Dig. Eingang: Positionierzielselektor Bit 0)
B6	RxD	+/-10 V	Receive Signal, RS232 Spezifikation
B7	DIN6	0 V24 V	Dig. Eingang: Start Positionierung
B8	+24V Logik	+24 V / I _{Logik} = 200 mA1000 mA	24 V Spannungsversorgung für die interne Logik und IOs. Gemeinsamer Ground mit dem Zwischenkreis
C1	GND	0 V	Gemeinsames Groundpotential für Zwischen- kreisspannung und 24V Logikversorgung.
C2	ZK+	+48 V / 15 A _{nom.}	Zwischenkreisversorgung (DC-Bus)

Die Schnittstelle X1 des DIS-2 IC ist kompatibel mit der des DIS-2. Die Signale AMON0 und DIN6 wurde getrennt, da noch freie Pins zur Verfügung standen.

11.17.2 Anschluss: Motor, Geber, Bremse, Erweiterungen

Die Steckverbinder für die Motorphasen [X301 – X303], die Haltebremse [X3], den Winkelgeber [X2] und den Erweiterungssteckplatz [X8] sind kompatibel zum DIS-2 48/10 ausgeführt. Bitte lesen Sie die entsprechenden Anschlusshinweise und die Belegung dieser Steckverbinder in den entsprechenden Unterkapiteln des Anhangs *11.16 Steckverbinder am DIS-2 48/10* nach.

11.18 Steckverbinder am DIS-2 48/10-FB

11.18.1 Anschluss: Spannungsversorgung und I/O [X1]

- Ausführung am Gerät: Phoenix PLUSCON VARIOCON mit insgesamt 18 Kontakten
- Gegenstecker [X1]:
- Phoenix PLUSCON VARIOCON Bausatz,

bestehend aus: 1x VC-TFS2

2x VC-TFS8 1x VC-TR2/3M

1x VC-MEMV-T2-Z

1x VC-EMV-KV-PG21-(11,5-15,5/13,5)

Abmessungen ca. L x B x H = 86 mm x 80 mm x 32 mm

С		В				А			
2	1	8	7	6	5	8	7	6	5
2	Ι	4	3	2	1	4	3	2	1

Abbildung 39: Pinnummerierung X1 DIS-2 48/10-FB

Tabelle 33: Belegu	ng Steckverbinder [X1]
--------------------	------------------------

Pin Nr.	Bezeichnung	Wert	Spezifikation
A1	DOUT0 / READY	0 V / 24 V	Betriebsbereit
A2	DIN8	0 V24 V	Dig. Eingang: Endschalter 1 (Sperrt n < 0)
A3	DIN5	0 V24 V	Dig. Eingang: Positioniergruppenselektor Bit 1
A4	#AIN1 (DIN3)	-10 V10 V (0 V24 V)	Inv. Analogeingang 1: Differenzieller Analogeingang mit AIN1 o. (Dig. Eingang: Positionierzielselektor Bit 3)
A5	DIN9	0 V24 V	Dig. Eingang: Endstufe einschalten
A6	DIN7	0 V24 V	Dig. Eingang: Endschalter 0 (Sperrt n > 0)
A7	DIN4	0 V24 V	Dig. Eingang: Positioniergruppenselektor Bit 0
A8	AIN1 (DIN2)	-10 V10 V (0 V24 V)	Analogeingang 1: Differenzieller Analogeingang mit #AIN1 o. (Dig. Eingang: Positionierzielselektor Bit 2)
B1	#AIN0 (DIN1)	-10 V10 V	Inv. Analogeingang 0: Differenzieller Analogeingang mit AIN0 (Dig. Eingang: Positionierzielselektor Bit 1)
B2	DOUT2	0 V24 V	Digitaler Ausgang: Programmierbar / Encoder-Ausg. Spur B
B3	AMON0	0 V10 V; 2 mA	Analogmonitor 0
B4	GND	0 V	Bezugspotential für die Steuersignale

B5	AIN0 (DIN0)	-10 V10 V	Analogeingang 0: Differenzieller Analogeingang mit #AIN0 (Dig. Eingang: Positionierzielselektor Bit 0)
B6	DOUT1	0 V24 V	Digitaler Ausgang: Programmierbar / Encoder-Ausg. Spur A
B7	DIN6	0 V24 V	Dig. Eingang: Start Positionierung
B8	+24V Logik	+24 V / I _{Logik} = 200 mA1000 mA	24 V Spannungsversorgung für die interne Logik und IOs. Gemeinsamer Ground mit dem Zwischenkreis
C1	GND	0 V	Gemeinsames Groundpotential für Zwischen- kreisspannung und 24V Logikversorgung.
C2	ZK+	+48 V / 15 A _{nom.}	Zwischenkreisversorgung (DC-Bus)

Die Schnittstelle X1 des DIS-2 FB ist weitgehend kompatibel mit der des DIS-2 IC. Die Doppelbelegung der Ein- und Ausgänge wurde aber weitgehend reduziert: DOUT1 und DOUT2 sowie DIN4 und DIN5 sind nun in allen Betriebsarten verfügbar

11.18.2 Anschluss: Motor, Geber, Bremse, Erweiterungen

Die Steckverbinder für die Motorphasen [X301 – X303], die Haltebremse [X3], den Winkelgeber [X2] und den Erweiterungssteckplatz [X8] sind kompatibel zum DIS-2 48/10 ausgeführt. Bitte lesen Sie die entsprechenden Anschlusshinweise und die Belegung dieser Steckverbinder in den entsprechenden Unterkapiteln des Anhangs *11.16 Steckverbinder am DIS-2 48/10* nach.

11.18.3 Anschluss: Bremswiderstand [X304 – X305]

Ausführung am Gerät:

*

2.8 mm FAST-ON männlich2.8 mm FAST-ON weiblich (Außen Isoliert)

Ausführung Bremswiderstand:

Gegenstecker [X304, X305]:

 $R_{BR} \geq 4,7~\Omega \ / \ P_{nom} = 100~W$ z.B: metallux PLR 250 5R $R_{BR} \ ist \ zwischen \ X304 \ und \ X305 \ anzuschließen$

Abbildung 40: Anschluss Bremswiderstand

Г				
	X30x	Bezeichnung	Wert	Spezifikation
	X304	ZK+	+48 V / 10 A _{nom.}	Zwischenkreisversorgung (DC-Bus)
	X305	BR-CHOP	0 V / 48 V	Anschluss an Brems-Chopper Transistor

Tabelle 34: Belegung Steckverbinder [X304, X305]

11.18.4 Anschluss: CAN-Bus X401 und X402

*	Ausführung am Gerät:	X401	M12-Einbaustecker, 5polig, A-codiert	
		X402	M12-Einbaubuchse, 5polig, A-codiert	
*	Position:	X401	Stirnseite – Mitte	
		X402	Stirnseite – links	
 Gegenstecker [X401]: Konfektionierte M12 Bus-Kabel Seite Stift, eine Seite Buchse, v 		onierte M12 Bus-Kabel, z.B. von Firma Phoenix, eine		
		Seite Sti	ft, eine Seite Buchse, vorkonfektionierte Längen;	
		Bestellbezeichnung: SAC-5P-MS/xxx-920/FS SCO xxx definiert dabei die Länge in [m]. erhältlich sind : $xxx = 0.3 / 0.5 / 1.0 / 2.0 / 5.0 / 10.0 / 15.0$		

Tabelle 35: Belegung Steckverbinder [X01] und [X402]

Pin Nr.	Bezeichnung	Wert	Spezifikation
1	Schirm	PE	Kontakt für Kabelschirm, im DIS-2 mit dem Gehäuse verbunden
2	n.b.	-	Nicht belegt
3	CAN_GND	0 V	Bezugspotential für den CAN-Bus intern mit dem ge- meinsamen Bezugspotential für den Zwischenkreis und die Logik verbunden
4	CANHI	0 V 5 V	Signal CAN_H gemäß CAN-Bus Spezifikation
5	CANLO	0 V 5 V	Signal CAN_L gemäß CAN-Bus Spezifikation

Abbildung 41: Position und Pinnummerierung X401, X402 und X5 am DIS-2 48/10-FB

11.18.5 Anschluss: Serielle Parametrierschnittstelle X5

- Ausführung am Gerät: M8-Einbaubuchse, 3polig,
- Position: Stirnseite rechts, siehe Abbildung 41
- Gegenstecker : M8 Gegenstecker zur freien Konfektionierung, z.B.
 Phoenix SACC-M8MS-3CON-M-SH

Tabelle 36: Belegung Steckverbinder [X5]

Pin Nr.	Bezeichnung	Wert	Spezifikation
1	RxD	+/-10 V	Receive Signal, RS232 Spezifikation
3	TxD	+/-10 V	Transmit Signal, RS232 specification
4	GND	0 V	Bezugspotential für die serielle Schnittstelle, intern mit dem gemeinsamen Bezugspotential für den Zwi- schenkreis und die Logik verbunden

Tabelle 37: Pinzuordnung für die Herstellung eines RS232-Adapterkabels zum PC / Notebook

Belegung X5 am DIS-2 48/10-FB		Dsub 9 Stecker (Pin) zum Anschuss an PC		Spezifikation
Pin Nr.	Bezeichnung	Pin Nr.	Bezeichnung	Spezifikation
1	RxD	3	TxD_PC	Receive Signal, RS232 Spezifikation
2	TxD	2	TxD_PC	Transmit Signal, RS232 Spezifikation
3	GND	5	GND	Bezugspotential für die serielle Schnittstelle, intern mit dem gemeinsamen Bezugspotential für den Zwischenkreis und die Logik verbunden
-	Schirm	-	Schirm	Kabelschirm beidseitig auf das Steckergehäuse auflegen

11.18.6 Anschluss: Erweiterungssteckplatz [X8]

- Ausführung am Gerät: 2 x 26 RM 1.27 mm Buchsenreihe
- ✤ Gegenstecker [X2]: 2 x 26 RM 1.27 mm Pinreihe

Abbildung 42: Position Anschluss Technologiemodul:

Tabelle 38 (A): Belegung Steckverbinder [X8]

Pin	Nr.	Bezeich- nung	Wert	Spezifikation
1		n.b.	Alle Signale mit 3,3 V CMOS Logikpegel	Nicht belegt
	2	+24 V	+ 24 V / max. 100 mA	Abgriff der abgesicherten Logikversorgung + 24 V für zukünftige Anwendungen / Gerätevarianten
3		DIN8	0 V / 24 V	Digitaler 24 V-Eingang für Endschalter, parallel zu X1
	4	DIN7	0 V / 24 V	Digitaler 24 V-Eingang für Endschalter, parallel zu X1
5		GND	0 V	Bezugspotential
	6	GND	0 V	Bezugspotential
7		RxD	+/- 10 V	Serielle Schnittstelle Signal RxD
	8	TxD	+/- 10 V	Serielle Schnittstelle Signal TxD
9		CANHI_NDR	0 V / 5 V	Feldbus Signal CAN_H vor "Filter"
	10	CANLO_NDR	0 V / 5 V	Feldbus Signal CAN_L vor "Filter"
11		+3.3 V	3,3 V +/- 2%	Spannungsversorgung Technologiemodul max. 100 mA (zusammen mit 5 V)
	12	+5 V	5,0 V +/- 5%	Spannungsversorgung Technologiemodul max. 100 mA (zusammen mit 3.3 V)
Pin	Nr.	Bezeich- nung	Wert	Spezifikation
-----	-----	------------------	------------------	---
13		D14		
	14	D15		
15		D12		
	16	D13		
17		D10		
	18	D11		
19		D8		
	20	D9	Alle Signale mit	10 Rit Recelledeebrittetelle – Deterbus
21		D6	Logikpegel	16 Bit Paralleischnittstelle – Datenbus
	22	D7	gp = g = .	
23		D4		
	24	D5		
25		D2		
	26	D3		
27		D0		
	28	D1		
29		A11		
	30	A12		
31		A9		
	32	A10		
33		A7		
	34	A8	Alle Signale mit	
05	01		3,3 V CMOS	16 Bit Parallelschnittstelle – Adressbus
35	200	A5	Logikpegei	
07	36	A6		
37	20	A3		
20	38	A4		
39	40	AT		
11	40	#DS		
41	10	#DS		
12	42	#PD		
+3	11	#\WR		Bus-Steuersignale für den Zugriff auf
-	+4	#IROB	Alle Signale mit	Technologiemodule über den
45		(SYNC)	3.3 V CMOS	Daten- und Adressbus
	46	#IRQA	Logikpegel	und Surachuan aariallaa Interfaas für dan Zugriff auf Tach
47		MOSI		nologiemodule mit SSIO-Schnittstelle
	48	SCLK		
49		MISO		
	50	#SS		
51		GND	0 V	Bezugspotential
	52	GND	0 V	Bezugspotential

Fortsetzung der Tabelle (B): Belegung Steckverbinder [X8]

11.19 Elektrische Installation des DIS-2 48/10 im System

11.19.1 Anschluss an die Versorgung und die Steuerung

Das folgende Bild zeigt eine typische Applikation mit zwei oder mehr Servopositionierregler DIS-2 mit dem Anschluss an eine 48V Zwischenkreisversorgung, sowie an eine 24V Logikversorgung und an eine Steuerung oder eine PLC. Die Netzversorgung mit dem Hauptschütz, den Sicherungen und einer NOT-AUS Vorrichtung ist nicht mit abgebildet. Diese Verdrahtung wird in Kap. 11.19.2 beschrieben.

Der Servopositionierregler ist mit der 48V Zwischenkreisversorgung und der 24V Logikversorgung verbunden. Dabei wird ein gemeinsames Bezugspotential verwendet (GND). Die Verwendung eines zentralen Sternpunktes nahe der Netzteile für alle GND Verbindungen reduziert die "ground bouncing" Effekte zwischen den Reglern.

Der Motor wird über die FAST-Ons X301 bis X303 auf der Platine des DIS-2 angeschlossen. Der DIS-2 steuert eine optionale Haltebremse über den Anschluss X3, der Anschluss des Gebers und des Temperaturfühlers erfolgt über den Wannensteckverbinder X2 auf der Platine.

Der DIS-2-48/10 FB besitzt zusätzlich einen integrierten Brems-Chopper. Er bietet daher die Möglichkeit, einen Bremswiderstand über die Fast-Ons X304 und X305 auf der Platine anzuschließen, wie im Abbildung 43 unten rechts dargestellt. Der Bremswiderstand wird im Normalfall auf die Montageplatte für das Elektronikgehäuse montiert.

Wenn die Analogeingänge für die Sollwertvorgabe genutzt werden sollen, sollten geschirmte und verdrillte Leitungen für AINx / #AINx verwendet werden, auch wenn die Steuerung kein differentielles Signal zur Verfügung stellt. Durch Anschluss von #AINx an das Bezugspotential 0V an der Steuerung werden "Gleichtaktstörungen", verursacht durch hohe Ströme die durch die Endstufe und die externe Verkabelung fließen, verhindert. Die Schirmung verhindert ein Einstrahlen von Störungen, sie sollte auf beiden Seiten (am Gehäuse des Servopositionierreglers DIS-2 und der Steuerung) aufgelegt werden.

Die Verdrahtung des CAN Busses sollte auf die gleiche Weise wie die Verdrahtung der Analogeingänge erfolgen. Ein Abschlusswiderstand von $120\Omega / 1\%$ muss an beiden Enden des CAN Bus Netzwerkes eingebaut werden. Die einzelnen Knoten des Netzwerkes werden grundsätzlich linienförmig miteinander verbunden, so dass das CAN-Kabel von Regler zu Regler durchgeschleift wird. Beim DIS-2 48/10 und beim DIS-2 48/10-IC (im Bild oben rechts) kann es notwendig sein, zwei Kabel an einen Pin vom Steckverbinder X1 aufzulegen. Beim DIS-2 48/10-FB (unten rechts) ist dies nicht erforderlich, weil bereits zwei Steckverbinder, X401 und X402, für den CAN-Bus vorhanden sind.

Beim DIS-2 48/10-FB ist ein separater Steckverbinder, X5, für die serielle Service-Schnittstelle vorgesehen, bei allen anderen DIS-2 Varianten erfolgt der Anschluss mit über X1.

Die Signale für die digitalen IOs, DINx und DOUTx, brauchen keinen Schirm um sie vor Einstrahlung von Störungen zu schützen, aber ein geschirmtes Kabel zwischen dem Servopositionierregler DIS-2 und der Steuerung verbessert das EMV Verhalten im ganzen System, besonders im Hinblick auf abgestrahlte Störungen. Zwischen der SPS und dem Regler werden zumindest die Steuersignale DIN9 (Reglerfreigabe) und DOUT0 (Betriebsbereit) verdrahtet.

Der Servopositionierregler DIS-2 muss komplett angeschlossen sein, bevor die Spannungsversorgungen für Zwischenkreis und Logik eingeschaltet werden. Wenn die Anschlüsse für die Spannungsversorgung verpolt sind, die Spannungsversorgung zu hoch ist, oder der Anschluss von Zwischenkreis- und Logikversorgung vertauscht ist, kann der Servopositionierregler DIS-2 zerstört werden.

11.19.2 NOT-AUS / NOT-HALT – Begriffe und Normen

Gemäß einer nach der Maschinenrichtlinie 98/37/EG bzw. EN ISO 12100, EN 954-1 und EN 1050 durchgeführten Gefahrenanalyse / Risikobetrachtung muss der Maschinenhersteller das Sicherheitssystem für die gesamte Maschine unter Einbezug aller integrierter Komponenten projektieren. Dazu zählen auch die elektrischen Antriebe. Das Stillsetzen der Maschine muss über die Maschinen-

steuerung herbeigeführt und sichergestellt werden. Dies gilt insbesondere für Vertikalachsen ohne Selbsthemmende Mechanik oder Gewichtsausgleich.

Die Norm EN 954-1 definiert die Anforderung an Steuerungen in fünf verschiedenen Kategorien abgestuft nach der Risikohöhe (s. Tabelle 39).

Kategorie 1)	Kurzfassung der Anforderung	Systemverhalten ²⁾	Prinzipien zum Errei- chen der Si- cherheit
В	Die sicherheitsbezogenen Teile von und/oder ihre Schutzeinrichtungen als auch ihre Bautei- le müssen in Übereinstimmung mit den zu- treffenden Normen so gestaltet, gebaut, aus- gewählt, zusammen-gestellt und kombiniert werden, dass sie den zu erwartenden Einflüs- sen standhalten können.	Das Auftreten eines Fehlers kann zum Verlust der Sicherheitsfunktion führen.	Überwiegend durch Auswahl von Bauteilen charakterisiert
1	Die Anforderungen von der Kategorie B müs- sen erfüllt sein. Bewährte Bauteile und bewährte Sicherheits- prinzipien müssen angewendet werden.	Das Auftreten eines Fehlers kann zum Verlust der Sicherheitsfunktion führen, aber die Wahrscheinlichkeit des Auftre- tens ist geringer als in Kategorie B.	
2	Die Anforderungen von der Kategorie B und die Verwendung bewährter Sicherheitsprinzi- pien müssen erfüllt sein. Die Sicherheitsfunk- tion muss in geeigneten Zeitabständen durch die Maschinensteuerung geprüft werden.	Das Auftreten eines Fehlers kann zum Verlust der Sicherheitsfunktion zwischen den Prüfabständen führen. Der Verlust der Sicherheitsfunktion wird durch die Prüfung erkannt.	
3	Die Anforderungen von der Kategorie B und die Verwendung bewährter Sicherheitsprinzi- pien müssen erfüllt sein. Sicherheitsbezogene Teile müssen wie folgt gestaltet sein: - In keinem der Teile darf ein einzelner Fehler zum Verlust der Sicherheitsfunktion führen. - Der einzelne Fehler wird erkannt, sobald es in angemessener Weise durchführbar ist.	Wenn der einzelne Fehler auftritt, bleibt die Sicherheitsfunktion immer erhalten. Einige, aber nicht alle Fehler werden erkannt. Eine Anhäufung unerkannter Fehler kann zum Verlust der Sicherheitsfunktion füh- ren.	Überwiegend durch die Struktur cha- rakterisiert
4	Die Anforderungen von der Kategorie B und die Verwendung bewährter Sicherheitsprinzi- pien müssen erfüllt sein. Sicherheitsrelevante Teile müssen zweikanalig aufgebaut sein; Ständige Selbstüberwachung; vollständige Fehlererkennung!	Wenn Fehler auftreten, bleibt die Sicher- heitsfunktion immer erhalten. Die Fehler werden rechtzeitig erkannt, um einen Verlust der Sicherheitsfunktion zu verhindern.	

Tabelle 39: Beschreibung der Anforderung für die Kategorien nach EN 954-1

1) Die Kategorie sind nicht dazu bestimmt, in irgendeiner gegebenen Reihenfolge oder hierarchischen Anordnung in Bezug auf die sicherheitstechnischen Anforderungen angewendet zu werden.

2) Aus der Risikobeurteilung wird sich ergeben, ob der gesamte oder teilweise Verlust der Sicherheitsfunktion(en) aufgrund von Fehlern akzeptabel ist.

Die Norm EN 60204-1 behandelt u.a. Handlungen im Notfall und definiert die Begriffe NOT-AUS und NOT-HALT (siehe Tabelle 40)

Tabelle 40: NOT-AUS und NOT-HALT nach EN 60204-1

Handlung	Definition (EN 60204-1)	Gefahrenfall
NOT-AUS	Elektrische Sicherheit im Notfall durch Ausschal- ten der elektrischen Energie in der ganzen Installa- tion oder einem Teil davon.	NOT-AUS ist einzusetzen, falls das Risiko eines elektrischen Schlags oder ein anderes Risiko elekt- rischen Ursprungs besteht.

NOT-HALT Funktionale Sicherheit im Notfall durch Stillsetzen einer Maschine oder bewegter Teile.	NOT-HALT ist dazu bestimmt, einen Prozess oder eine Bewegung anzuhalten, sofern dadurch eine Gefährdung entstanden ist.
--	---

Eine NOT-AUS- Einrichtung erfordert folglich zwangsweise das Ausschalten der Energieversorgung über mindestens ein Netzschütz, während ein NOT-HALT ggf. auch durchgeführt werden kann, ohne die Netzversorgung zu unterbrechen.

Für das Stillsetzen der Antriebe beschreibt die Norm EN 60204-1 drei Stopkategorien, die abhängig von einer Risikoanalyse eingesetzt werden können. (siehe Tabelle 41). Das nächste Kapitel enthält einen Vorschlag für eine Systemverdrahtung, mit der die Stoppkategorie 0 und 1 ermöglicht wird.

Die Stoppkategorie 2 ist nicht für NOT-AUS oder NOT-HALT geeignet. Die Stoppkategorie 2 wird häufig realisiert, indem der Sollwert von der Steuerung auf Null gesetzt wird. Bei höheren Sicherheitskategorien sind im Regelfall aber zusätzliche externe Überwachungsgeräte erforderlich !

Tabelle 41: Stoppkategorien				
1		TT		

Stoppkategorie 0	Ungesteuertes Stillsetzen durch sofortiges Abschal- ten der Energie.	NOT-AUS oder NOT-HALT
Stoppkategorie 1	Gesteuertes Stillsetzen und Abschalten der Energie, wenn Standstill erreicht ist.	NOT-HALT
Stoppkategorie 2	Gesteuertes Stillsetzen ohne Abschalten der Ener- gie im Standstill.	nicht für NOT-AUS oder NOT-HALT geeig- net

11.19.3 NOT-AUS / NOT-HALT Verdrahtungsbeispiele

Die Abbildung 44 auf der folgenden Seite zeigt eine Beispielrealisierung für ein System, bestehend aus einem oder mehreren DIS-2, den Netzteilen mit dem Netzanschluss, einer Steuerung und den Schaltelementen zur Realisierung der NOT-HALT Funktion gemäß EN 60204-1, Stopkategorie 1.

Das System besteht aus folgenden Bauteilen:

	S1	Netzschalter
	F1	Sicherung für die 24 V Logikversorgung Die Logikversorgung wird primärseitig über L1 und N mit 230 V AC gespeist.
	Q1	3-phasiger Überstromschutzschalter, die Dimensionierung richtet sich nach der Anzahl der DIS-2 und nach den Erfordernissen des Netzteils.
	K1	Netzschütz
	F2 2	Sicherung in der +48 V Leistungsteilversorgung, diese Sicherung ist für jeden DIS-
	-	separat erforderlich
	ECS	NOT-HALT-Schaltgerät, daran angeschlossen ist eine Sicherheitskette
	PLC	SPS oder Industrie-PC, der für die Steuerung der Anlage eingesetzt wird.
Im Norma	albetrieb s	sind die Schaltkontakte im ECS geschlossen. Die SPS steuert über einen Digital-

ausgang das Netzschütz K1 an Jeder DIS-2 meldet seine Betriebsbereitschaft über DOUT0 an die SPS zurück. Für jeden DIS-2 wird

somit ein digitaler Eingang an der SPS benötigt. Die SPS steuert über einen weiteren Digitalausgang die Reglerfreigabe DIN9 aller angeschlossener DIS-2. Auch dieses gemeinsame Freigabe-Signal wird

über das ECS geführt. Im Fehlerfall (NOT-AUS, NOT-HALT) wird also sowohl die Zwischenkreisversorgung, als auch die Reglerfreigabe weggeschaltet.

Die Auswahl eines geeigneten ECS richtet sich nach der konkreten Anwendung. Im einfachsten Fall entfällt das ECS, stattdessen werden mehrpolige Schaltkontakte in der Sicherheitskette verwendet.

ື່ງໃ

NOT-AUS (Stoppkategorie 0):

Im Falle einer NOT-AUS- Situation wird die Sicherheitskette betätigt. Die Sicherheitskette besteht je nach Maschine aus verschiedenen Elementen, z.B. NOT-AUS-Taster, Schlüsselschalter, Start-Taster usw. Das ECS überwacht die Sicherheitskette auch auf Fehler, wie Leitungsbruch, Kurzschluss usw. Es sorgt im Fehlerfall oder bei geöffneter Kette für die sichere Abschaltung von K1. Die Netzversorgung für das 48 V Netzteil wird unterbrochen.

Die gezeigte Beispielverdrahtung kann je nach geforderter Sicherheitskategorie abweichen:

Beispielverdrahtung gemäß Abbildung 44 \rightarrow erfüllt EN 954 Si-Kat. 1

Beispielverdrahtung gemäß Abbildung 44 erweitert um zweites Hauptschütz, ECS ausgeführt gemäß EN 954 Si-Kat. 3 → erfüllt EN 954 Si-Kat. 3

Nach dem Abschalten der Netzversorgung ist noch eine Restenergie in den Zwischenkreiskondensatoren des 48 V Netzteils und des DIS-2 vorhanden, die sich erst langsam (Dauer: > 5 min) durch interne Entladewiderstände im DIS-2 und im Netzteil abbaut.

Bei $U_{ZK} = 50$ V beträgt die elektrische Energie je DIS-2: $P_{C,ZK} \approx 0,7$ Ws

In Anwendungen, in denen dies nicht akzeptabel ist, muss der Zwischenkreis über einen zusätzlichen Kontakt auf K1 und einen geeignet dimensionierten Entladewiderstand schnellentladen werden.

NOT-HALT (Stoppkategorie 1):

Über einen weiteren Kontaktsatz im ECS wird auch die Reglerfreigabe vom DIS-2 weggeschaltet. Die Antriebe bremsen dann an der Schnellhaltrampe auf Drehzahl Null, danach schaltet der DIS-2 die Endstufe aus.

Die gezeigte Beispielverdrahtung kann je nach geforderter Sicherheitskategorie abweichen:

Beispielverdrahtung gemäß Abbildung 44 \rightarrow erfüllt EN 954 Si-Kat. 1

Beispielverdrahtung gemäß Abbildung 44 sowieAntriebe mit Haltebremse, verzögerte Abschaltung der 24 V Logikversorgung des DIS-2 über ECS. ECS ausgeführt gemäß EN 954 Si-Kat. 3, \rightarrow erfüllt EN 954 Si-Kat. 3

GEFAHR!

Die beschriebene NOT-AUS und NOT-HALT Verdrahtung ist nur <u>ein</u> mögliches Realisierungsbeispiel. Je nach Anwendung können weitergehende oder gänzlich andere Vorschriften hinsichtlich der Ausführung dieser Funktionen bestehen.

Der Maschinenhersteller bzw. Projektierer muss in jedem Fall die Sicherheitsanforderungen im Einzelfall klären, ein individuelles Sicherheitskonzept für die Anlage ausarbeiten und dann die Verdrahtung und die Komponenten entsprechend auswählen.

11.20 Hinweise zur sicheren und EMV gerechten Installation

11.20.1 Erläuterungen und Begriffe

Die elektromagnetische Verträglichkeit (EMV), englisch EMC (electromagnetic compatibility) oder EMI (electromagnetic interference) umfasst folgende Anforderungen:

- eine ausreichende Störfestigkeit einer elektrischen Anlage oder eines elektrischen Geräts gegen von außen einwirkende elektrische, magnetische oder elektromagnetische Störeinflüsse über Leitungen oder über den Raum.
- eine ausreichend geringe Störaussendung von elektrischen, magnetischen oder elektromagnetischen Störungen einer elektrischen Anlage oder eines elektrischen Geräts auf andere Geräte der Umgebung über Leitungen und über den Raum.

11.20.2 Allgemeines zur EMV

Die Störabstrahlung und Störfestigkeit eines Servopositionierregler ist immer von der Gesamtkonzeption des Antriebs, der aus folgenden Komponenten besteht, abhängig:

- Spannungsversorgung
- Servopositionierregler
- Motor
- Elektromechanik
- Ausführung und Art der Verdrahtung
- Überlagerte Steuerung

Die Servopositionierregler DIS-2 wurden gemäß der für elektrische Antriebe geltenden Produktnorm EN 61800-3 qualifiziert

Es sind in der überwiegenden Zahl der Fälle keine externen Filtermaßnahmen erforderlich (s.u.).

Die Konformitätserklärung zur EMV Richtlinie 89/336/EWG ist beim Hersteller verfügbar.

11.20.3 EMV Bereiche: erste und zweite Umgebung

Die Servopositionierregler DIS-2 erfüllen bei geeignetem Einbau und geeigneter Verdrahtung aller Anschlussleitungen die Bestimmungen der zugehörigen Produktnorm EN 61800-3. In dieser Norm ist nicht mehr von "Grenzwertklassen" die Rede, sondern von sogenannten Umgebungen. Die "erste" Umgebung umfasst Stromnetze, an die Wohngebäude angeschlossen sind, die zweite Umgebung umfasst Stromnetze, an die ausschließlich Industriebetriebe angeschlossen sind. ື່ງໃ

11.20.4 Anschluss zwischen DIS-2 und Motor

Wenn der Servopositionierregler DIS-2 direkt auf den Motor montiert ist, befinden sich die Kabel im inneren des Gehäuses und sind nur wenige cm lang. In diesem Fall ist keine Schirmung notwendig.

Wenn der DIS-2 separat vom Motor montiert wird sollten folgende Verdrahtungsrichtlinien beachtet werden:

- Nur geschirmte Kabel verwenden, die Geberkabel sollten eine innere und äußere Schirmung haben.
- Verwenden Sie getrennte Kabel f
 ür die Motorphasen und den Winkelgeber. Alternativ: Verwenden Sie ein kombiniertes Kabel f
 ür Motor und Winkelgeber mit getrennten Schirmungen.
- Verbinden Sie das Schild des Motorkabels mit dem Motorgehäuse.
- Schließen Sie die innere Schirmung des Geberkabels mit PIN 1 von X2.
- Achten Sie auf eine "gute" PE Verbindung zwischen Motor und DIS-2.

Eine "gute" PE Verbindung hat selbst bei hohen Störfrequenzen eine kleine Impedanz.
Eine optimale PE Verbindung erhält man, wenn der DIS-2 direkt auf den Motor montiert wird. Wenn DIS-2 und Motor separat aufgebaut werden, sollten Sie auf das gleiche (metallene) Maschinenteil montiert werden. In diesem Fall sollte die Oberfläche des Maschinenteils aus nicht lackiertem Aluminium oder verzinkten Blech bestehen!

11.20.5 Anschluss zwischen DIS-2 und Netzteil

- Verwenden Sie Kabel mit ausreichenden Querschnitt um "ground bouncing" auf der Zwischenkreisversorgung zu reduzieren:
 2.5 mm² (AWG13) sollten für eine Kabellänge bis zu 5 m zwischen Netzteil und DIS-2 ausreichen.
- Benutzen Sie eine sternförmige Verkabelung (siehe Kapitel 0), wenn mehrere DIS-2 an ein Netzteil angeschlossen werden. Der Sternpunkt des Bezugspotentials sollte so nah wie möglich am Netzteil sein.
- Das Netzteil sollte einen Y Kondensator von mindestens 100 nF zwischen der Zwischenkreisspannung und PE sowie zwischen GND und PE haben.
- Achten Sie auf eine "gute" PE Verbindung zwischen DIS-2 und Netzteil. Es ist wichtig eine gute Rückführung der hochfrequenten Leckströme, erzeugt durch die getaktete Endstufe im DIS-2 in Verbindung mit der Windungskapazität zwischen Motorphase und PE im Motor, zu haben.
- Um sicher zu gehen, dass die Grenzwerte f
 ür abgestrahlte Strahlung eingehalten werden sollte ein abgeschirmtes Kabel verwendet werden.

Mounting chassis / sheet metal

Abbildung 45: Anschluss DIS-2 an das Netzteil, Schirmauflage am Chassis

Wenn möglich, legen Sie bitte den Kabelschirm mit auf das Maschinenteil, auf dem der Servopositionierregler DIS-2 montiert ist, wie in Abbildung 45 dargestellt. Der Kabelmantel wird nur im Bereich der schirmklemme vom Kabel entfernt, anschließend wird der offene Kabelschirm mittels einer schirmklemme auf das Maschinenteil gedrückt. Die Auswahl der Schirmklemme richtet sich nach der gegebenen mechanischen Konstruktion. Die vorgeschlagene Schirmklemme Phoenix SK 20 D ist für maximal 2 mm Blechstärke ausgelegt. Es muss eine gut leitfähige und flächige Verbindung vom Motor zum Maschinenteil und vom Maschinenteil zum Kabelschirm hergestellt werden.

Sollte diese Art der Schirmauflage aus konstruktiven Gründen nicht machbar sein, so können Sie den Kabelschirm notfalls auch mit einem geeigneten Kabelschuh unter der Befestigungsschraube des DIS-2 auflegen, wie Abbildung 46 nachfolgend zeigt.

Abbildung 46: Anschluss DIS-2 an das Netzteil, Schirmauflage über Kabel

Die Gerätevarianten DIS-2 48/10 IC und DIS-2 48/10 FB verwenden für X1 Steckverbinder der Serie Pluscon Variocon der Firma Phoenix. Bei Verwendung der von uns empfohlenen metallischen Steckergehäuse (vergl. Kap. 11.17.1 bzw. 11.18.1) ist eine gute PE Verbindung bereits durch die Konstruktion des Gehäuses gewährleistet. Es ist ausreichend, den Schirm mit auf das Steckergehäuse des Gegensteckers aufzulegen.

> Eine "gute" PE Verbindung hat selbst bei hohen Störfrequenzen eine kleine Impedanz. Eine Montage des DIS-2 und der Spannungsversorgung auf des gleiche (metallene) Maschinenteil ist in den meisten Fällen auseichend. Wenn nicht, verwenden Sie ein flexibles, ca. 10 mm breites Kupferband oder ein Anschlusskabel mit mindestens 6 mm² Cu-Querschnitt zum Herstellen einer PE Verbindung.

ື່ງ

GEFAHR!

Alle PE-Schutzleiter müssen aus Sicherheitsgründen unbedingt vor der Inbetriebnahme angeschlossen werden.

Die Vorschriften der EN 50178 für die Schutzerdung müssen unbedingt bei der Installation beachtet werden!

INDEXVERZEICHNIS:

A

Abbruch	111
Alt+F4	114
Analoge Eingänge	94
Analogmonitor	95
Numerische Überlaufbegrenzung	95
Skalierung	95
Anzeigeeinheiten	
Anzeigemodus	40
Benutzerdefiniert	40
Direkteingabe	40
Standardwert	40
Automatische Bestimmung Winkelgeber	30

B

Baudrate

Aktuelle Übertragungsgeschwindigkeit	. 99
Bevorzugte Übertragungsgeschwindigkeit	.99
Bremsfunktionen	.92

С

CANopen

Addition von DIN0DIN3 zur Knotenadresse 97
Basis-Knotenadresse
Baudrate
Kommunikation einstellen

D

DCO-D <u>a</u> tei laden	
Offline-Parametrierung	152
Online-Parametrierung	149
DCO-D <u>a</u> tei speichern	
Offline-Parametrierung	152
Online-Parametrierung:	149
Default-Parametersatz	28
Digitale Ausgänge	88
Einstellung	88
Funktionsübersicht	88
Digitale Eingänge	82
Funktionsübersicht	83
Drehmomentengeregelter Betrieb	51
Drehmomentkonstante	51
Drehzahlbegrenzung	42
Drehzahlgeregelter Betrieb	48
Drehzahlistwertfilter	48
Drehzahlregler	

Manuelle Einstellung 48
Drucken
Parametersatz 150
Ε
Eingabegrenzen41

•	0	
Endsch	nalter	
Brem	sbeschleunigungen	42
Endstu	fe	35
Erstinb	etriebnahme	28
Parar	netersatz laden	28

F

Fahrbeginnverzögerung	92
Fehleranalyse	109
Fehlerbehebung	109
Fehlerfenster	109
Fehlermanagement	110
Fehlermeldungen	102
Fehlerquittierung	109
Firmware laden	153

G

Grundkonfiguration		38
--------------------	--	----

H

Hard- und Software-Voraussetzungen 16

Ι

Information	. 117
Inkrementalgeberemulation	91
Installation von CD-ROM	27
Istwerte	
Des Servos	. 113
Istwertefenster	. 113

K

Kommunikation einstellen	99
Kommunikation mit RS232	99
Kommunikation über Kommunikationsobje	kte
	114
Kommunikationsfenster für RS232-	
Übertragung	100

L

Lagegeregelter Betrieb	56
Lageregler	
Manuelle Einstellung	57

Lieferumfang17
Μ
Meldungen

Digitale Ausgänge	89
Restweg	61
Schleppfehler	
Motordaten	33
Automatisch bestimmen	
Manuelle Einstellung	

N

Nothalt

Bremsbeschleunigungen	42
Numerische Eingabefelder	111

0

Offline-Parametrierung	152
<u>O</u> K	111
Optimierung	
Drehzahlregler	
Lageregler	
Stromregler	
Oszilloskop	119
Channels	
Einstellungen	
Trigger	
Zeitbasis	

P

Parametersatz Drucken150
Parametersatz Laden149
Parametersatz Sichern148
Parametersatz Speichern149
Positionierung
Einstellungen 60
Geschwindigkeiten/Beschleunigungen/Zeiten. 62
Positionen anfahren
Ziele parametieren 60
Programm beenden114

R

Referenzfahrt	
Offset Startposition	70
Referenzfahrt	64
Einstellungen	69
Status	64
Ziel	69

Referenzfahrt	
Fahrt auf Nullposition nach Referenzfahrt	70
Referenzfahrt	
Geschwindigkeiten/Beschleunigungen/Zeiten.	70
Referenzfahrt bei Endstufen- und	
Reglerfreigabe7	<i>'</i> 0
Referenzfahrtmethode6	64
Aktuelle Position	58
Negativer Anschlag	57
Negativer Anschlag mit Nullimpulsauswertung	
	57
Negativer Endschalter	55
Negativer Endschalter mit	
Nullimpulsauswertung6	55
Nullimpuls	56
Positiver Anschlag	58
Positiver Anschlag mit Nullimpulsauswertung 6	57
Positiver Endschalter	56
Positiver Endschalter mit Nullimpulsauswertun	g
	55
REF-Schaltfläche6	39
Regelinterrupts11	7
Reglerfreigabelogik4	12
Reglerkaskade4	16
RS232-Schnittstelle	99

S

Schleppfehler57
Serielle Kommunikation
Optimierung99
Problembehebung 116
Serielle Schnittstelle
Baudraten durchsuchen 115
Comport wechseln 115
Firmware Download 116
Mit alten Parametern noch einmal probieren. 115
Offline-Parametrierung 115
Sicherheitsparameter 42
Sollwerte51
Sollwertquellen51
Sollwertrampe53
Steuerelemente 112
Stromregler
Manuell einstellen
Symbolleiste
Offline-Online-Parametrierung
Online-Offline- Parametrierung 152

Schnellzugriff	118

Τ	
Temperaturüberwachung	37
Transfer-Fenster	99
V	
Verzeichnisse	114
W	
Wegprogramm	71
Digitale Eingänge	71

Werkseinstellung	3
Winkelgeber	
Einstellung 30)
Winkelgeberdaten manuell 32	2
Winkelgeberidentifikation)
Ζ	
Ziele parametieren	
Positionierung 60)
Zielwerte 113	3
Zwischenkreisüberwachung 36	5

Zykluszeiten 117